
Imperial College of Science, Technology
and Medicine

Department of Mathematics

Proxy Scheme and Automatic Differentiation:

Computing faster Greeks in Monte Carlo

simulations

Blandine Stehlé
CID: 00613966

September 2010

Submitted to Imperial College London in fulfilment of the requirements for the
Degree of Master of Science in Mathematics and Finance

Abstract

Most, if not all, major financial institutions have trading operations which stand pre-
pared to write complex contingent claims, usually termed exotic options, with almost arbi-
trary payoffs, on multiple underlying asset classes on demand for their customers.

With the aim being to minimise the time taken to quote prices to customers, the pricing
methodology usually consists of an object-orientated implementation of a Monte Carlo
simulation together with an option payoff specified by a scripting language which uses
parsing technology to allow the trader to specify an (almost) arbitrary payoff external to
the Monte Carlo simulation engine. This results in a very generic and flexible methodology
for pricing the exotic option in question.

However, in practice, obtaining good quality Greeks (ie sensitivities of the price of the
exotic option with respect to input parameters) for hedging and risk-management purposes
is at least as important as obtaining an accurate price. Having an extremely generic and
flexible pricing methodology is not useful if there is not a generic and flexible methodology
for computing Greeks. Obtaining Greeks by a “bump-and-revalue” methodology is generic
and simple to implement but is well-known to be slow and often yields inaccurate Greeks.

In this dissertation, we consider and analyse two other potentially very generic method-
ologies for obtaining Greeks. These methodologies are the “partial proxy scheme” and
the “pathwise derivative method” combined with Automatic Differentiation. The latter
methodology can be implemented either in “forward mode” or in “adjoint mode”. We
describe these methodologies in detail and give numerical examples which compare their
performances (from the point of view of both timing and accuracy) with a bump-and-revalue
methodology. We discuss the use of Automatic Differentiation software to compute generic
pathwise derivatives. This approach yields very real advantages since it obviates the need
to write any new code whatsoever to obtain Greeks. We conclude that the pathwise deriva-
tive method, combined with Automatic Differentiation, seems to be the best methodology
for obtaining Greeks taking into account computation times, accuracy and ease of generic
implementation.

i

Acknowledgements

Special thanks to John Crosby, my project supervisor, for his dedicated guidance, sup-
port and invaluable suggestions throughout this entire project. I am deeply grateful to him
for his involvement and his help in both the implementation and this dissertation.

Sincere thanks to Mark Davis, my project supervisor at Imperial College, for his advice.

Many thanks to all my Imperial College lecturers, from whom I gained invaluable knowl-
edge and without which this thesis would not have been possible.

Many thanks to all the members of the front-office quantitative analytics team at UBS
for their welcome.

ii

Contents

1 Introduction 1

2 The LIBOR Market Model 5
2.1 Stochastic Differential Equation . 6
2.2 Drift in the forward measure . 6
2.3 Log-Coordinates . 7

3 Partial Proxy Scheme 8
3.1 Monte Carlo simulations . 8
3.2 Sensitivities in Monte Carlo simulations . 9
3.3 Simulation scheme . 10
3.4 Proxy Scheme . 11

4 Automatic Differentiation 13
4.1 First approach . 13
4.2 Tangent or Forward mode . 14
4.3 Adjoint or Backward mode . 14

5 Implementation 17
5.1 Bump-and-revalue . 18
5.2 Proxy Scheme . 19

5.2.1 Advantages . 21
5.2.2 Drawbacks . 21

5.3 Automatic Differentiation . 21
5.3.1 Forward mode . 23
5.3.2 Adjoint mode . 24

6 Numerical Examples 26
6.1 First tests of the methods . 26
6.2 Particular case of a Vanilla Caplet . 28

6.2.1 Test on 12 LIBORs . 28
6.2.2 Test on 4 LIBORs . 30

6.3 Binary Cash or Nothing basket option . 32
6.4 Computational efficiency . 34
6.5 Forward Starting Digital Caplet . 36
6.6 Caplet in a displaced diffusion model . 42
6.7 Final comments on the AD software efficiency 47

7 Conclusion 49

References 50

iii

1 Introduction

This dissertation examines and compares different methodologies for obtaining Greeks
(ie partial derivatives) in Monte Carlo simulations.

The vast majority of major financial institutions have trading and sales operations
which stand prepared to write complex contingent claims, usually termed exotic options,
with almost arbitrary payoffs, on multiple underlying asset classes. The exotic options
might have payoffs reflecting a very specific view that an investor has on the future price
performance of, for example, several underlying assets such as stock indices (which may,
additionally, for example, be quoted in different currencies).

Alternatively, they might be linked to the desire of a corporation to buy assets or
securities which closely match its future liabilities or which provide a (possibly, partial)
hedge against the cost of the corporation’s raw materials moving in an adverse fashion.
Clearly, well-known financial options such as asian (average-rate) options, chooser options,
“best-of” options, spread options on the relative performance of the prices of two assets or
commodities all fall into the general class of what might be termed exotic options.

However, once one allows for different payoffs and different underliers such as stocks,
currencies, bonds, rates on interest-rate swaps, default events, rates on Credit Default
Swaps, commodities, measures of realised variance and indices linked to property prices or
measures of inflation, the range of possible exotic options is infinite.

From the view of, for example, an investor, when she has determined a particular view
on the future price performance of particular assets, she may be very keen to act on this
view as soon as reasonably possible else the market may move against her.
Taking this into account and taking into account the competitive nature of investment
banking, it is clear that investment banks, to be successful in their options’ trading op-
erations, must minimise the time taken to quote, to their customers, the prices of exotic
options.

With this in mind, investment banks have typically made a large investment in building
a sophisticated general-purpose Monte Carlo engine, using object-orientated programming
techniques. The engine is designed to be very flexible and can simulate, for example, multi-
ple underlying assets of every conceivably possible type. Note that the engine is, necessarily,
a Monte Carlo simulation since, for example, PDE solvers are not usually able to solve prob-
lems in the high-dimensionality that is implicit within many types of exotic options. The
Monte Carlo simulation is typically implemented in C++. Given the sophistication of the
implementation, new releases of the executable program containing the Monte Carlo engine
may only be possible on a time-frame of several days to several weeks (to allow time to,
not only, change the underlying source-code but also to build and run test-harnesses, link
in with wider IT infrastructure, etc).

The Monte Carlo simulation engine links with a separate mechanism for specifying the
payoff of the option. Traders need to be able to specify the payoff of the option within,
perhaps, a few minutes. This is done by specifying the payoff using a scripting language
(essentially, a mini-programming language - some such languages - for example, BOOST
spirit - are widely available as freeware downloadable from the internet).

1

1. INTRODUCTION

The Monte Carlo engine then links in the specified payoff at run-time, using parsing
technology to interpret the exotic option payoff as a mathematical formula. This architec-
ture has the desired effect of allowing for the pricing of exotic options, with almost arbitrary
payoffs, at minimal cost in elapsed time.

However, once a particular trade has been done with a customer, the question immedi-
ately arises of obtaining Greeks (ie sensitivities of the price of the exotic option with respect
to input parameters) for hedging and risk-management purposes - and this is typically a
difficult question. Since the pricing methodology is optimised for flexibility and generality,
any methodology for obtaining Greeks must be equally flexible.

Broadly speaking, methodologies for obtaining Greeks from Monte Carlo simulations
fall into three categories: “bump-and-revalue”, likelihood ratio methods and pathwise dif-
ferentiation methods. All three of these methods are described in Glasserman (2004) [11]
and in chapters 3 and 4 so we simply give the briefest description here.

“Bump-and-revalue” follows the naive but simple strategy of repeating the same sim-
ulation with different input parameters. A forward-finite difference for NG Greeks would
require performing the simulation NG + 1 times - once to get the original price and once
each with a perturbed input parameter.
A central finite-difference raises this to performing the simulation 2NG + 1 times. Clearly,
this method will be slow. There are potentially other drawbacks to this method (see Glasser-
man (2004) [11]) when the exotic option has a discontinuous payoff.
On the positive side, bump-and-revalue is clearly simple to implement.

Likelihood ratio methods rely on differentiating the transition probability density func-
tion of the quantities underlying the simulation (such as log stock prices or log forward
LIBOR rates). The likelihood ratio method can be a powerful and general method (for
example, it does not require any assumption on the option payoff such as continuity) but
it has two potential drawbacks. Firstly, the variance of the estimate of the Greek may
be very high (see section 7.3.2 of Glasserman (2004) [11]) and, secondly, it requires the
transition probability density function to be known in closed-form. In practice, the latter
is often not known analytically. This lead Fries and Kampen (2006) [8] and Fries and Joshi
(2006) [7] to suggest a variant on the likelihood ratio method, called the “partial proxy
scheme”, which does not need an analytical transition probability density function. We
discuss this method at greater length in chapter 3. But briefly, the partial proxy scheme es-
sentially replaces an analytical differentiation of the transition probability density function
with a finite-difference differentiation which allows the possibility to combine the flexibility
of finite-differences with some of the benefits of the likelihood ratio method.

Pathwise differentiation methods rely on differentiating (the discounted value of) the
option payoff with respect to some input parameter (as opposed to likelihood ratio methods
which essentially differentiate the transition probability density function).
Then the method essentially computes (by Monte Carlo simulation) the expectation of the
derivative (of the discounted value) of the option payoff.
In order to be differentiable, we require that the option has a continuous payoff. In prac-
tice, many exotic options have discontinuous payoffs which appears to slightly limit the

2

1. INTRODUCTION

applicability of the method. However, this is less of a restriction than it seems because it
is nearly always possible to slightly change the option payoff so that it is continuous.

For example, consider a binary cash-or-nothing call option with strike K. Let the price
of the underlying asset at maturity be S.
The option has payoff: IS≥K where I denotes the indicator function.
This payoff is clearly discontinuous. However, it can be replaced, for some small h > 0, by

1 if S ≥ K + h
2 ,

0 if S ≤ K − h
2 , and

1
h

(
S −

(
K − h

2

))
otherwise.

This idea is, generically, referred to as a “ramp” and the value of h is referred to as the
“ramp width”. Clearly, there are potential drawbacks here: For any strictly positive h, we
do change the option payoff (and therefore also the option price) and it leaves open the
choice of a suitable value of h.

Nonetheless, this idea of replacing a discontinuous payoff by a continuous payoff is very
generic (see Glasserman (2004) [11] and Giles (2007) [9] for examples for other types of
options apart from binary cash-or-nothing options) and can easily be built into the payoff
definition in the scripting language.
Since, it is very generic, we will, unless otherwise explicitly specified, assume that it has
been done and assume that all payoffs are (or have been modified to be) continuous.

As part of the pathwise differentiation method, we need to differentiate the option
payoff. For the case of, for example, a Vanilla call option, this is easily done analytically -
it is the indicator function (see section 7.2 of Glasserman (2004) [11] for details).

For very complicated option payoffs, analytical differentiation is still possible but be-
comes tedious in extreme cases as it will likely involve a quantitative analyst mathematically
differentiating the payoff and then coding it manually. Of course, we are motivated to find
methods which are highly generic and require minimal implementation time. Fortunately,
there is an alternative. This uses Automatic Differentiation (we will often abbreviate this
to AD) software. This is software [18] which can be downloaded from the internet which
can automatically compute analytically the derivative of any function (including an option
payoff) whose functional form is specified (for example, in C++ or via a scripting language).
We refer the reader to Giles (2007) [9] and Capriotti (2010) [4] for more background infor-
mation on Automatic Differentiation.

Allied with ramps and Automatic Differentiation software, pathwise differentiation be-
comes a very flexible and powerful tool for computing Greeks. However, there is potentially
even better news. In practice, a trader using a LIBOR Market Model with semi-annual
LIBORs to price, say, a 30 year exotic interest-rate option may need to compute a delta
(partial derivative) with respect to each LIBOR up to the maturity of the option (implying
that there are 60 delta calculations) as well as a vega (partial derivative) with respect to the
volatility of each LIBOR (implying that there are 60 vega calculations). In total, therefore,
in this example (which is by no means untypical) the trader needs 120 partial derivatives.
Giles and Glasserman (2006) [10] show how the pathwise differentiation method can be
used either in “forward mode” or in “adjoint mode”.

3

1. INTRODUCTION

Very briefly, “forward mode” corresponds to the brief description above, i.e. it corre-
sponds to the idea of computing derivatives via a chain rule from input parameters towards
the output sensitiviy. With the aid of Automatic Differentiation software, all of this can be
done automatically -the user does not need to add any new code.

The essence of the “adjoint mode” (see Giles and Glasserman (2006)[10], Capriotti and
Giles (2010) [5], Capriotti (2010) [4] and Leclerc et al. (2009) [14]) is that it is a variant
on the “forward mode” which turns out to be an incredibly efficient way of computing the
partial derivatives of an option price with respect to large numbers of input parameters.
Hence, it is extremely effective for the example given above for the case where it is necessary
to compute 120 partial derivatives.

Automatic Differentiation can also be used with the adjoint mode. Again, the user
does not need to add any new code. This is especially useful if someone was using the ap-
proach of Giles and Glasserman (2006) [10] without Automatic Differentiation. Giles and
Glasserman (2006) [10] used a standard LIBOR market model without displaced diffusion.
Suppose one wished to extend one’s model to include displaced diffusion. Without Auto-
matic Differentiation, this would involve writing, by hand, significant amounts of new code
which would take time and possibly be a source of error. With Automatic Differentiation,
the whole process is completely automated which saves development time and minimises
the possibility of software bugs.

We give a full description of “forward mode” and “adjoint mode” in chapter 4. The
rest of this dissertation is structured as follows:

In chapter 2, we briefly introduce the LIBOR Market Model.
In chapter 3, we discuss the partial proxy scheme.
In chapter 4, we discuss the use of Automatic Differentiation together with pathwise differ-
entiation as well as describe the “forward mode” and “adjoint mode”.
In chapter 5, we discuss implementational issues.
In chapter 6, we illustrate with a number of numerical examples.
Chapter 7 concludes.

4

2 The LIBOR Market Model

In this chapter, we briefly introduce the LIBOR market model (referred to as LMM)
that we will use in almost all our future numerical examples.
For the presentation of this model, we will rely on Glasserman (2004) [11], chapter 3, p.166
and succeeding.

We have chosen the LMM to be the model principally used in our tests for several rea-
sons: it is commonly used in practice, it has a non-trivial drift term and is, in general, a
high dimensional model which makes Monte Carlo simulation the natural pricing method-
ology.

The LMM or BGM model was introduced by Brace, Gatarek, and Musiela in 1997 (Brace
et al. (1997) [2]). LIBOR stands for London Inter-Bank Offered Rate and is calculated
daily through an average of rates offered by banks in London. Separate rates are quoted for
different maturities (e.g., three months and six months) and different currencies. LIBOR
rates are based on simple interest. If L denotes the rate for an accrual period of length
δ (usually expressed in years), then the interest earned on one unit of currency over the
accrual period is δL.

A forward LIBOR rate works similarly. We fix δ and consider a maturity T . The
forward rate L(0, T) is the rate set at time 0 for the interval [T, T + δ]. If we enter into
a contract at time 0 to borrow 1 at time T and repay it with interest at time T + δ, the
interest due will be δL(0, T).

We now consider a class of models in which a finite set of maturities or tenor dates

0 = T0 < T1 < · · · < Tn < Tn+1

are fixed in advance. Many derivative securities tied to LIBOR and swap rates are sensitive
only to a finite set of maturities and it should not be necessary to introduce a continuum
to price and hedge these securities. Let

δi = Ti+1 − Ti, i = 0, . . . , n,

denote the lengths of the intervals between tenor dates. Often, these would all be equal
to a nominally fixed interval of a quarter or half year; but even in this case, day-count
conventions would produce slightly different values for the fractions δi.

For each date Ti, we let Bi−1(t) denote the time t price of a zero-coupon bond maturing
at Ti, 0 ≤ t ≤ Ti and i ∈ 1, 2, . . . , n+ 1. Similarly, we write Li(t) for the forward rate as
of time t for the accrual period [Ti+1, Ti+2];

(Note: we use this notation to fit in with the indexing of the vectors we use in our C++ pro-
gram, with L0(t) being the first forward LIBOR at time t, over the accrual period [T1, T2],
which fixes at time T1).

5

2. THE LIBOR MARKET MODEL

The relation defining the forward LIBORs is given in terms of the bond prices by

Li(t) =
Bi(t)−Bi+1(t)

δi+1Bi+1(t)
, 0 ≤ t ≤ Ti+1, i = 0, 1, . . . , n− 1. (2.1)

After Ti+1, the forward rate Li becomes meaningless but it simplifies notation to extend
the definition of Li(t) beyond Ti+1 by setting Li(t) = Li(Ti+1) for all t ≥ Ti+1.

2.1 Stochastic Differential Equation

The LMM, as described in Glasserman (2004) [11], is a model in which the evolution of
the forward LIBOR rates is described by a system of stochastic differential equations of the
form (with the usual notations):

dLi(t)

Li(t)
= µi(t,L(t))dt+ σi(t)dWi(t), 0 ≤ t ≤ Ti+1, i = 0, . . . , n− 1. (2.2)

with W , Brownian motion verifying dWi(t) · dWj(t) = ρij dt and {ρij}(i,j)∈{0,...,n−1}2 , cor-
relation matrix of the LIBORs.
Moreover, Σ ≡ (σ0, σ1, . . . , σn−1) defines the vector of volatilities of the forward LIBORs.

The drift term µi(t,L(t)) is a function of the LIBORs’ vector L(t) and we state its formula
in the following section.

2.2 Drift in the forward measure

We consider the forward measure Pn+1 for maturity Tn+1 and take the bond Bn as numeraire
asset. We define the deflated bond prices to be ratios Bi(t)/Bn+1(t), which simplifies to

n−1∏
j=i+1

(1 + δjLj(t)). (2.3)

We can derive the expression for the drift term starting from the requirement that the
deflated ratios be martingales and proceed by induction (backwards from i = n − 1) to
derive restrictions on the evolution of the n LIBORs.

The drift term is then given by (Glasserman (2004) [11]):

µi(t,L(t)) = −
n−1∑
j=i+1

δjLj(t)σi(t)σj(t)ρij
1 + δjLj(t)

, 0 ≤ t ≤ Ti+1, i = 0, . . . , n− 1. (2.4)

We finally find that the arbitrage-free dynamics of the n LIBORs Li, i = 0, . . . , n− 1,
under the forward measure Pn+1 are given by

dLi(t)

Li(t)
= −

n−1∑
j=i+1

δjLj(t)σn(t)σj(t)ρij
1 + δjLj(t)

dt+ σi(t)dWn+1(t), (2.5)

for 0 ≤ t ≤ Ti+1, and i = 0, . . . , n− 1.

6

2. THE LIBOR MARKET MODEL

2.3 Log-Coordinates

The log-coordinates of the vector L are given by the vector K = log(L). We rewrite
equation (2.2) with vector notations to obtain

dK(t) = µKdt+ Σ · dW, (2.6)

where Σ ≡ (σ0, σ1, . . . , σn−1), µK ≡ (µK0 , . . . , µ
K
n−1) and µKi ≡ µLi − 1

2σ
2
i by Itô’s Lemma.

Log-coordinates will be used for our implementation of the LIBOR market model.

7

3 Partial Proxy Scheme

In this chapter, we present the methodology of the partial proxy scheme, introduced by
Fries and Kampen (2006) [8].

The idea is to improve the likelihood ratio method in Monte Carlo simulations by gen-
erating paths from a scheme, referred to as the proxy scheme, which is simpler than the
considered target (or original) scheme, but not too far from it, and by adjusting the proxy
measure obtained, that means to introduce weights (via the likelihood ratio method) in the
Monte Carlo sum which approximates the expectation of the option price.

To explain in details what is behind this idea, we start by redefining a Monte Carlo
simulation and the computation of sensitivities, afterwards we will recall the notion of
scheme and finally, we will develop the methodology of the proxy scheme of Fries and
Kampen [8], Fries and Joshi [7] and Fries [6].

3.1 Monte Carlo simulations

Let Σ be a volatility matrix and Γ be the Cholesky decomposition of the correlation
matrix {ρij}(i,j)∈{0,...,n−1}2 (with n being the dimension of the SDE), i.e. Γ satisfies the

equation (Γ · Γ>)ij = ρij for all (i, j) ∈ {0, . . . , n− 1}2. Define a filtered probability space
(Ω,Q,F , {Ft}), fulfilling the usual conditions, and let U be an n-dimensional Q-Brownian
motion with mutually uncorrelated components.

A standard Monte Carlo simulation of a stochastic differential equation, e.g. an Îto
process satisfying the stochastic differential equation

dK = µKdt+ Σ · Γ · dU, K(0) = K0, (3.1)

defined over (Ω,Q,F , {Ft}), is given by generating sample paths ω1, . . . , ωn of time-discrete
realizations of the equation:

K(t+ ∆t) = K(t) +

∫ t+∆t

t
µK(τ)dτ +

∫ t+∆t

t
Σ(τ) · Γ(τ) · dU(τ). (3.2)

Since the integrals in (3.2) are usually not available in closed form, the time-discrete process
is approximated, for example by an Euler scheme:

K∗(t+ ∆t) = K∗(t) + µK
∗
∆t+ Σ · Γ ·∆U . (3.3)

The Monte Carlo approximation of the expectation E[f(K(T))|F0] of a function f of a
realization K(T) is given by

E[f(K(T))|F0] =

∫
f(κ)φK(κ−K0)dκ

≈
∫
f(κ)φK

∗
(κ−K0)dκ

≈ 1

nMC

nMC∑
i=1

f(K∗(T, ωi))

(3.4)

8

3. PARTIAL PROXY SCHEME

where φK and φK
∗

denote the probability density functions of K(T) and K∗(T) respec-
tively and nMC denotes the number of simulations. To shorten notation we will drop the
conditioning on F0 in the expectation and the K0, implicitly viewing the probabilities as
transition probabilities depending on K0 as a parameter. We assume that the time dis-
cretization error is small, i.e. that the densities φK and φK

∗
are close.

The whole procedure involves two approximation errors: the time discretization error and
the Monte Carlo error, i.e. the error introduced by the approximation of the last integral
in equation (3.4) through a sum.

3.2 Sensitivities in Monte Carlo simulations

We now present how to compute sensitivities in Monte Carlo simulations, as described in
Fries and Kampen (2006) [8].

Let θ denote any model parameter (e.g. K0, Σ, Γ) and let us assume that the densities
φK and φK

∗
depend smoothly on θ and are C1 close to each other, which means that

sup
θ

∣∣∣φK(θ)− φK∗
(θ)
∣∣∣+ sup

θ

∣∣∣∣ ∂∂θφK(θ)− ∂

∂θ
φK

∗
(θ)

∣∣∣∣ < ε, with ε > 0. (3.5)

Then one might differentiate the above approximation to get partial derivatives of the
expectation E[f(K(T))] with respect to θ (giving the risk measure):

∂

∂θ
E[f(K(T))] =

∫
f(κ)

∂φK

∂θ
(κ)dκ

≈
∫
f(κ)

∂φK
∗

∂θ
(κ)dκ

≈? 1

nMC

nMC∑
i=1

f ′(K∗(T, ωi)) ·
∂K∗

∂θ
(T, ωi)

(3.6)

In applications the partial derivative is numerically replaced by finite differences.
The last step in equation (3.6) holds only in a weak sense and might not even be an “ap-
proximation”, e.g. if f is not smooth, say even discontinuous, the last term in (3.4) is
discontinuous too, thus not differentiable. This is the reason why finite differences applied
to Monte Carlo simulation has poor convergence rates for non-smooth functions f .

As Fries and Kampen (2006) [8] explain, this problem can be solved by using the Monte
Carlo approximation of the differentiated integral rather than differentiating the Monte
Carlo approximation, i.e. we consider

∂

∂θ
E[f(K(T))] =

∫
f(κ)

∂φK

∂θ
(κ)dκ

≈
∫
f(κ)

∂φK
∗

∂θ
(κ)dκ =

∫
f(κ)

∂
∂θφ

K∗
(κ)

φK∗(κ)
φK

∗
(κ)dκ

≈! 1

nMC

nMC∑
i=1

f(K∗(T, ωi)) ·
∂
∂θφ

K∗
(K∗(T, ωi))

φK∗(K∗(T, ωi))

(3.7)

9

3. PARTIAL PROXY SCHEME

If we compare the last term in (3.7) with the one in (3.4) we see that the partial
derivative is just the expectation of a weighted payoff function f · w where the weight is
given by

w =
∂
∂θφ

K∗

φK∗ =
∂

∂θ
log
(
φK

∗
)

(3.8)

Thus the sensitivity has a similar approximation error than the price. This is essentially
the likelihood ratio approach of Broadie and Glasserman (1996) [3] or the application of a
Malliavin weight (see Nualart (1995) [16]).

It should be noted that (3.7) already exhibits a slight difference to the way the likelihood
ratio or Malliavin weight is usually considered, namely that we consider the weight to be
derived from the scheme K∗ and not from the original scheme K, in other words: we first
apply a time discretization to the scheme and then apply the likelihood ratio. This is the
key idea behind the notion of proxy scheme that we will see in more details in the following.

We present in the next section the concept of scheme that we have already used in the
introduction of this chapter.

3.3 Simulation scheme

To define a simulation scheme, we need to consider a discretization 0 ≡ t0 < t1 < t2 < . . .
of simulation time. We want to generate samples K(ti, ωj) of the time ti-realizations K(ti)
of the stochastic process K.
The simulation scheme is usually a time-discrete process Ko(ti), i = 0, 1, 2, . . . , which ap-
proximates K(ti).

There exists a large number of different schemes, like the Predictor-Corrector scheme
or the Trapezoidal Average Drift scheme, but we will only consider the well-known Euler
(or log-Euler) scheme in this dissertation.

Starting from the equation (2.2) of the LIBOR market model,

dK(t) = µKdt+ Σ · dW
= µKdt+ Σ · Γ · dU,

(3.9)

where W is an n-dimensional Q-Brownian motion with correlated components and U is
an n-dimensional Q-Brownian motion with mutually uncorrelated components, the Euler
Scheme is given by

Ke(ti+1) = Ke(ti) + µK(ti,K
e(ti)) · (ti+1 − ti) + Σ · Γ · (U(ti+1)− U(ti)). (3.10)

The Euler scheme realizations Ke(ti) or the log-Euler scheme realizations Le(ti) are
basic approximations of the true realizations K(ti) and L(ti) respectively.

If we are under a non stochastic volatility model, i.e. if Σ · Γ is constant over [ti, ti+1],
we can evaluate the discretization error of the scheme which corresponds to the inaccurate
integration of the drift term:∫ ti+1

ti

µK(t,K(t))dt ≈ µK(ti,K
e(ti)) · (ti+1 − ti). (3.11)

10

3. PARTIAL PROXY SCHEME

We now possess all the necessary tools to fully understand the idea behind the proxy
scheme methodology. This is the subject of the next section.

3.4 Proxy Scheme

We take up the result of the section 3.2, in equation (3.6) and modify the approach towards
a more generic framework to which we may apply finite differences by shifting input parame-
ters while retaining the smoothness and convergence properties of a likelihood ratio method.

We follow the idea introduced by Fries and Kampen (2006) [8] and consider a second
scheme, Ko, referred to as the proxy scheme with probability density function φo. We recall
that we have the stochastic process K of probability density function φ already discretized
with a target scheme K∗ of probability density function φ∗.
φo should be close to φ but need not to be a very accurate approximation.

We consider the following equations to illustrate the proxy scheme innovation:

E[f(K(T))] =

∫
f(κ)φK(κ)dκ

≈
∫
f(κ)φK

∗
(κ)dκ =

∫
f(κ)

φK
∗
(κ)

φKo(κ)
φK

o
(κ)dκ

≈ 1

nMC

nMC∑
i=1

f(Ko(T, ωi)) ·
φK

∗
(Ko(T, ωi))

φKo(Ko(T, ωi))
.

(3.12)

Here, we only need to generate paths via the proxy scheme, which is supposed to be simpler
than the original one, and correct the approximation error by adding weights in the Monte
Carlo sum in order to get the expectation of the (discounted) payoff.

We continue with the analysis of Fries and Kampen (2006) [8]. For the sensitivity with
respect to a model parameter θ, we take the proxy scheme Ko and its density φK

o
fixed,

i.e. that does not depend on θ, and may therefore differentiate this approximation when
φK

∗
is C2 close to φK to obtain the likelihood ratio weighted Monte Carlo:

∂

∂θ
E[f(K(T))] =

∫
f(κ)

∂φK

∂θ
(κ)dκ

≈
∫
f(κ)

∂φK
∗

∂θ
(κ)dκ =

∫
f(κ)

∂
∂θφ

K∗
(κ)

φKo(κ)
φK

o
(κ)dκ

≈ 1

nMC

nMC∑
i=1

f(Ko(T, ωi)) ·
∂φK

∗

∂θ (Ko)

φKo(Ko)

=
∂

∂θ

(
1

nMC

nMC∑
i=1

f(Ko(T, ωi)) ·
φK

∗
(Ko)

φKo(Ko)

)
.

(3.13)

Remarks The differential operator only acts on φK
∗

since φK
o

is assumed fixed. For the
implementation, the realizations are generated by one scheme which will be used for both
the price and the sensitivities. The model parameter θ steps in at only one place, in the

11

3. PARTIAL PROXY SCHEME

transition probability φK
∗
, i.e. θ is present in the Monte Carlo weights and nowhere else.

Thus, the sensitivities may be calculated generically by applying finite differences to the
numerical implementation of the model. This constitutes the main advantage of the proxy
scheme methodology.

The second approach that we consider in this dissertation is the Automatic Differenti-
ation methodology. This is the purpose of the next chapter.

12

4 Automatic Differentiation

In this chapter, we present the notion of Automatic Differentiation and its application
to the computation of accurate Greeks in Monte Carlo simulations.

The concept of Automatic Differentiation (referred to as AD) applied to Greeks com-
putation has been recently introduced by Giles and Glasserman (2006) [10] and works are
still in progress, especially by Capriotti (2010) [4] and Capriotti and Giles (2010) [5].

In the context of AD, derivatives are computed by using the very well known chain
rule for composite functions, in a clever way since the evaluation of a function and its
derivatives are calculated simultaneously, using the same code and common temporary
values. If the code for the evaluation is optimised, then the computation of the derivatives
will automatically be optimised. One very important point concerning this methodology is
that it is only suitable for continuous payouts.

4.1 First approach

The analysis that we present in this section is very closely based on Giles (2007) [9].
AD concerns the computation of sensitivity information from an algorithm or computer
program.

Consider a computer program which starts with a number of input variables ui, i =
1, . . . , nu, represented by the vector u0. Each step in the execution of the computer program
computes a new value as a function of two previous values. Appending this new value to
the vector of active variables, the kth execution step can be expressed as

uk = f k
(
uk−1

)
≡
(

uk−1

fk
(
uk−1

)) , (4.1)

where fk is a scalar function of two of the elements of uk−1. The result of the complete N
steps of the computer program can then be expressed as the composition of these individual
functions to give

uN = fN ◦ fN−1 ◦ ... ◦ f 2 ◦ f 1
(
u0
)
. (4.2)

Defining u̇k to be the derivative of the vector uk with respect to one particular element of
u0, differentiating (4.1) gives

u̇k = Dnu̇k−1, whereDk ≡
(

Ik−1

∂fk/∂uk−1

)
, (4.3)

and with Ik−1 being the identity matrix with dimension equal to the length of the vector
uk−1. The derivative of (4.2) then gives

u̇N = DNDN−1 . . . D2D1u̇0, (4.4)

This separation of the calculation into two phases, the path simulation and the payoff
evaluation, accurately represents a clear distinction in real-world implementations. The
path simulation is the computationally demanding phase and is usually implemented very

13

4. AUTOMATIC DIFFERENTIATION

efficiently in C++. The payoff evaluation is often implemented less efficiently, sometimes
through the use of a scripting language. The reason for this is that the emphasis is on flex-
ibility, making it easy for traders to specify a new financial payoff. The financial products
change much more frequently than the SDE models.

We now introduce the following notations to explain in details the two ways of using
AD, i.e. the “forward” and “adjoint” modes:

Let P denote the price of a derivative, θ denote the vector of the model parameters,
of length nθ, which we wish to differentiate the price P with respect to, and let S be the
state vector of length nS that represents, for example, in the context of the LIBOR market
model, the values of (log of) the forward LIBORs at each time step of a Monte Carlo path.

To obtain the value of the price P , we start from the model parameters vector θ in
input and generate the state vector S from which we can obtain P via the chain rule:

θ −→ S −→ P.

We want to compute the derivative of P with respect to each of the elements of θ, holding
fixed the randomly generated Brownian path increments for this particular path calculation.

We will consider two different approaches to this problem: the forward Automatic
Differentiation and the backward Automatic Differentiation, that we present in the following
sections.

4.2 Tangent or Forward mode

Adopting the notation used in the Algorithmic Differentiation research community, let
θ̇, Ṡ, Ṗ denote the derivative with respect to one particular component of θ. Straightfor-
ward differentiation gives

Ṡ =
∂S

∂θ
θ̇, Ṗ =

∂P

∂S
Ṡ, (4.5)

and hence

Ṗ =
∂P

∂S

∂S

∂θ
θ̇ . (4.6)

The standard pathwise sensitivity analysis proceeds forwards through the process (this is
referred to as “forward mode” or “tangent mode” in AD terminology) and can be illustrated
by the following figure:

θ̇ −→ Ṡ −→ Ṗ .

We note that the forward mode operates from input parameters towards the output price.

4.3 Adjoint or Backward mode

Again, following the notation used in the AD community the adjoint quantities θ, S, P
denote the derivatives of P with respect to θ, S, P , respectively, with P = 1 by definition.
Differentiating again, one obtains

θ ,

(
∂P

∂θ

)T
=

(
∂P

∂S

∂S

∂θ

)T
=

(
∂S

∂θ

)T
S, (4.7)

14

4. AUTOMATIC DIFFERENTIATION

and similarly

S =

(
∂P

∂S

)T
P , (4.8)

giving

θ =

(
∂S

∂θ

)T (∂P
∂S

)T
P . (4.9)

The adjoint analysis proceeds backwards (“adjoint mode” or sometimes called “reverse
mode” in AD terminology) and can be illustrated by the following chain rule, with arrows
in the opposite sense:

θ ←− S ←− P .
The sensitivities are computed via the backward mode, from the option price back towards
the initial input parameters.

Remarks The forward and reverse (or backward or adjoint) modes compute exactly the
same payoff sensitivities since Ṗ = θ. The only difference is in computational efficiency.
A separate forward mode calculation is required for each sensitivity that is required. On
the other hand, there is only one payoff function (which may correspond to a portfolio con-
sisting of multiple financial products) and so there is always only one reverse mode adjoint
calculation to be performed, regardless of the number of sensitivities to be computed.

To give a more concrete example, suppose we have a Monte Carlo with N time steps
and m underlying assets (or more generally, state variables which could be (log) stock prices
or (log) forward LIBOR rates in a LIBOR market model). The vector of input parameters
θ is a vector with m elements. It corresponds to the initial i.e. time zero value of the
underliers (e.g. (log) forward LIBOR rates). If we include the initial i.e. time zero value
of the underliers, then the state vector S has nS ≡ m(N + 1) elements (1 for the time zero
and N for each time-step, for each of m underliers).

Then ∂S/∂θ is a matrix which has m2(N + 1) elements. Computing this matrix will
typically be time-consuming. Clearly the elements which correspond to time zero will be
trivial to compute (they are one or zero) and in a simple Black-Scholes model many other
elements will be zero.
However, in a model with state-dependent drifts (e.g. LIBOR market model) or state-
dependent volatilities (e.g. a local volatility model), computing ∂S/∂θ will involve many
non-trivial elements and so will be time-consuming, perhaps O(Nm2) in a worst-case sce-
nario.

The vector ∂P/∂S will be assumed to be a vector with m(N + 1) elements, i.e. the
payoff can depend on any of the m underliers at each of N + 1 times (including time zero).
Computing equation (4.6) will have overhead roughly

O(m(N + 1)) · O(Nm2) ∼ O(N(N + 1)m3)

and will get one element of the m element vector Ṗ .
Computing equation (4.9) will have overhead roughly

O(m(N + 1)) · O(Nm2) ∼ O(N(N + 1)m3)

15

4. AUTOMATIC DIFFERENTIATION

i.e. the same as in equation (4.6) but it will get all m elements of the m element vector θ.

Hence, independent of N , equation (4.9) is approximately m times more efficient in that
it computes all m elements of the vector θ in the same time as equation (4.6) computes one
of the m elements of Ṗ .
Note that this conclusion holds whatever the value of N and whatever the actual compu-
tational overhead of calculating ∂S/∂θ.

We stress again that Ṗ = θ. In other words, the benefit of using the reverse (or backward
or adjoint) mode is that it is computationally faster -it, in no way, changes the accuracy of
the estimates of the partial derivatives ∂P/∂θ.

Allied with these explanations concerning both the partial proxy scheme and the Auto-
matic Differentiation applied to the pathwise method, we continue this dissertation with the
most important parts, i.e. the implementation of these methodologies in a C++ program
and their illustration with some numerical examples.

16

5 Implementation

In this chapter, we discuss the implementation of the different methodologies considered
in this project. The central part of the work has been to create classes able to generate
one single path according to the LIBOR market model SDE. This approach raises several
problems, and the main ones are listed below:

• How to generate independent, normally distributed random numbers.

• How to include the Automatic Differentiation software into C++ files in order to keep
the whole code as generic as possible.

The first point concerning the random numbers is very important. Indeed, all our results
are based on simulations driven by random numbers. As a consequence, if the numbers are
not following the required law, all our results will be irrelevant.

We need to generate independent standard normal random numbers, i.e. numbers fol-
lowing the law ∼ N (0, 1). As discussed in Glasserman (2004) [11], the C++ function
“rand()” is not a good solution, especially when one wants to generate a very large number
of random numbers. Other methods such as Linear Congruential Generators are also not
ideal because the periodicity of the resulting numbers is typically too small.
We have chosen to use the Mersenne Twister algorithm for the generation of Gaussian ran-
dom numbers (see Matsumoto and Nishimura (1998) [15]). This algorithm presents a high
periodicity and is known to pass tests of “randomness”. Files, written in C++, have been
provided by John Crosby at UBS which were included into our project. The implementa-
tion of the Mersenne Twister algorithm allows us to change the “seed” to generate different
streams of random numbers. Uniform random numbers were converted into normal random
numbers using the inverse cumulative normal methodology.

The second point concerning the implementation of the Automatic Differentiation method-
ology is also an important one. Indeed, the beauty of this methodology lies in the fact that
it is totally generic and very simple to implement. However, after having included header
files coded by the FADBAD team into the project’s code, we have been obliged to replace
some simple functions by template functions and to modify the way we were using the
Monte Carlo simulations.
We will illustrate this point by presenting short extracts of pseudo-code written in C++
style.

We now present the three different methods that have been implemented during this
project for pricing options on the LMM:

• “Bump-and-revalue”

• Proxy Scheme

• Automatic Differentiation.

17

5. IMPLEMENTATION

5.1 Bump-and-revalue

The first method, that we will henceforth call “bump-and-revalue”, consists of evaluating
the price of an option utilising Monte Carlo simulation and a two-sided finite difference for
each bumped model parameter.

We consider the input parameter vector [θ1, . . . , θnθ] which can be any relevant param-
eters used in the model (for example, the initial values of the LIBORs or their volatilities).
We are interested in computing the partial derivative of the price P (θ) of an option with
respect to θl, i.e. the quantity ∂P (θ)/∂θl, for l = 1, . . . , nθ.

The “bump-and-revalue” methodology consists in computing P (θ1, . . . , θl+hl, . . . , θnθ) and
P (θ1, . . . , θl − hl, . . . , θnθ) to approximate

∂P (θ)

∂θl
by

P (θ1, . . . , θl + hl, . . . , θnθ)− P (θ1, . . . , θl − hl, . . . , θnθ)
2hl

(5.1)

for each l ∈ {1, . . . , nθ}.

This approach is computationally very expensive since it requires 2nθ Monte Carlo sim-
ulations to estimate all the sensitivities.
However, it is completely generic and will provide a good benchmark to evaluate the com-
petitiveness of our two new methods in our future tests.

In our implementation, we always used a proportional bump size of 1% on each model
parameter. In other words, the bump size on the lth parameter (denoted by hl in equation
(5.1)) is always equal to 0.01 θl ≡ hl.

The most naive implementation of bump-and-revalue essentially repeats a Monte Carlo
simulation with different input parameters.
In other words, in pseudo-code, with central finite-differencing, the program would look
like:

for(int k=0; k<=(2*n_theta); k++){

// bump input parameters if k !=0

for(int i=0; i<nMC; i++){

// do simulation ...

}

}

In the above, the k = 0 loop would compute the (unbumped) price and the remaining
loops would recompute the price with bumped inputs. The resulting prices are stored and
then one computes the appropriate Greeks via equation (5.1).

This is precisely how we have cast bump-and-revalue thus far. However, in our imple-
mentation, we actually did things slightly differently. In pseudo-code, our program looks
like:

for(int i=0; i<nMC; i++){

18

5. IMPLEMENTATION

// do simulation ...

for(int k=0; k<=(2*n_theta); k++){

// code which implements that which changes for

// each required partial derivative

}

}

In other words, we wrote the program so that the bumping occurs inside the Monte
Carlo loop i and not outside.
The reason for this is that if, for example, we are computing a delta with respect to the ini-
tial value of a forward LIBOR rate, only the initial starting point of the simulation changes.
Everything else about the simulation is the same (at least in a simple LIBOR market model).

Clearly, there can be considerable computational savings for delta calculations by writ-
ing the code this way. One can do likewise for vega calculations although since changing
volatilities will change entire paths the computational savings will probably be quite mod-
est and limited to not having to redraw random numbers, for example.
Neverthess, the result is that our implementation is somewhat optimised and is, therefore,
faster than the most naive implementation of bump-and-revalue and the reader should bear
this in mind when comparing calculation times.

However, we stress that in real-world applications the scope for this sort of optimisation
is very modest. For example, the code will become very cluttered and hard to maintain.
More pertinently, if we had instead wished to compute a partial derivative with respect
to a shift in a swap rate of a specific tenor or with respect to a shift in the continuously-
compounded spot interest-rate to all maturities or with respect to a shift in the Black
volatility of caps of all maturities up to 5 years, say, then our supposed code optimisation
would quickly be more of a hindrance rather than a help.

5.2 Proxy Scheme

In this section, we explain how we have implemented the proxy scheme methodology.
The price of the option is computed by equation (3.12):

E[f(K(T))] ≈ 1

nMC

nMC∑
i=1

f(Ko(T, ωi)) ·
φK

∗
(Ko(T, ωi))

φKo(Ko(T, ωi))
,

where the weights are expressed in terms of the transition probabilities:

φK
∗
(Ko(T, ωi))

φKo(Ko(T, ωi))
=

nStep−1∏
j=0

φK
∗
(tj ,K

o(tj , ωi); tj+1,K
o(tj+1, ωi))

φKo(tj ,Ko(tj , ωi); tj+1,Ko(tj+1, ωi))
. (5.2)

Firstly, we present the pseudo-code that corresponds to this method:

for(int i=0; i<nMC; i++){ //loop on the number of Monte Carlo simulations

for(int j=0; j<nStep; j++){ //loop on the time step

generate_random_numbers();

19

5. IMPLEMENTATION

generate_one_step_via_proxy_scheme();

compute_weight_for_one_step();

}

//at the end of this loop, we have computed one entire path with

//the proxy scheme and we get the specific weight to apply in the

//future Monte Carlo sum

price=take_weighted_average_over_all_MC_simulations();

}

In this pseudo-code, we already know how to generate the random numbers, i.e. via the
Mersenne Twister generator, and we also know how to generate one step via an Euler
scheme but we have not presented yet the computation of the Monte Carlo weights.

The weights are computed using the transition probability of an Euler scheme (or a
log-Euler scheme if we deal with L and not directly with the vector of the logarithm of the
LIBORs K).
For a given path ω, we have the equation (using the notation previously introduced):

Ke(ti+1, ω) = Ke(ti, ω) + µK(ti) · (ti+1 − ti) + Σ · Γ · (U(ti+1, ω)− U(ti, ω)). (5.3)

Recall that U is an n-dimensional Q-Brownian motion with uncorrelated components.
Equation (5.3) can be solved for ∆U(ti) = U(ti+1)− U(ti) by:

∆U(ti) = Γ−1 · Σ−1(∆Ke − µK(ti)∆ti). (5.4)

Using the transition probability of ∆U(ti, ω)

φ(ti, U(ti, ω); ti+1, U(ti+1, ω)) =
1

(2π∆ti)n/2
exp

(
−(∆U(ti))

2

2∆ti

)
(5.5)

we get:

φK
e
(ti,Ki; ti+1,Ki+1) =

1

(2π∆ti)n/2
exp

(
− 1

2∆ti

(
Γ−1 · Σ−1(∆Ke − µK(ti)∆ti)

)2)
.

(5.6)

For the sensitivities, recall the equation (3.13) from the chapter on the partial proxy scheme,
with θ being a model parameter:

∂

∂θ
E[f(K(T))] ≈ ∂

∂θ

(
1

nMC

nMC∑
i=1

f(Ko(T, ωi)) ·
φK

∗
(Ko)

φKo(Ko)

)

=
1

nMC

nMC∑
i=1

f(Ko(T, ωi)) ·
∂
∂θφ

K∗
(Ko)

φKo(Ko)
.

(5.7)

We now apply the two-sided finite difference to the last equation to get:

∂

∂θ
E[f(K(T))] ≈ 1

nMC

nMC∑
i=1

f(Ko(T, ωi)) ·
φK

∗
(Ko, θ + h)− φK∗

(Ko, θ − h)

2h φKo(Ko)
. (5.8)

From this approach, we get the following pseudo-code:

20

5. IMPLEMENTATION

double h; //we choose the shift in the two-sided finite differences

for(int i=0; i<nMC; i++){ //loop on the number of Monte Carlo simulations

for(int j=0; j<nStep; j++){ //loop on the time step

generate_random_numbers();

generate_one_step_via_proxy_scheme();

w1=compute_weight_for_one_step(theta+h);

w2=compute_weight_for_one_step(theta-h);

sensitivity_weight=(w1-w2)/(2*h);

}

//at the end of this loop, we have computed one entire path with the

//proxy scheme and the specific weight of one sensitivity

dprice_dtheta=take_weighted_average_over_all_MC_simulations();

}

We see that we only need to compute paths once via the proxy scheme since we only
use the finite differences on the weights.

Then we can compute the sensitivities with respect to any model parameter in the same
time as we are computing the price of one path. The proxy scheme method gives several
advantages that we list in the following bullet points.

5.2.1 Advantages

• The method may be used for weak schemes where one does have an analytic formula
φK

∗
but does not have efficient method for drawing realizations of K∗.

• The method may be used to compute sensitivities of discontinuous functions f .

• The method is efficient in terms of memory consumption.

5.2.2 Drawbacks

• The method will fail to correct the transition density φo if the condition that φo be
close and C2 close to φ is not verified.

5.3 Automatic Differentiation

In this section, we present the implementation of the Automatic Differentiation via the
FADBAD software.

FADBAD is a C++ program package (downloadable from the internet) which combines
the two basic ways of applying the chain rule, namely forward and backward (or adjoint)
Automatic Differentiation. Both the forward and the backward differentiation methods use
operator overloading to redefine the arithmetic operations, so that the program is capable
of calculating first order derivatives.

21

5. IMPLEMENTATION

The only thing a user has to provide is the C++ program that performs the evaluation
of the function. Since the computation of the derivatives is itself a C++ program we can
obtain higher order derivatives by building the forward and the backward Automatic Dif-
ferentiation classes on top of each other.

FADBAD needs to classify variables according to their use, which is done as follows:

• A dependent variable is a variable which has been assigned to another dependent
variable or to a non-constant expression.

• An independent variable is a variable which has not been used yet, or which has been
assigned to a constant, another independent variable or to an expression where no
variables appeared.

As already explained in chapter 4 the forward and backward algorithm are structurally
very different.

We present here how the forward and backward algorithms have been implemented in
the FADBAD software [18], as described in the software documentation from Stauning and
Bendtsen (1996) [1].

In the forward algorithm, the differentiation is carried out alongside of the function
evaluation and when differentiating, it is convenient to store the partial derivatives in the
classes of the dependent variables.
For the backward algorithm, the operator overloading is used to form a directed acyclic
graph during the forward sweep, i.e. alongside of the function evaluation. During the re-
verse sweep the graph is traversed backwards and the class of each occurring variable stores
the partial derivative with respect to itself, of the dependent variables that one wishes to
differentiate.

Thus, at the end of the backward sweep the partial derivatives with respect to the in-
dependent variables are stored in the classes corresponding to the independent variables.

Another significant difference between the forward and backward method is the use of
storage. In the forward algorithm there is no need to store temporary objects when they
are no longer used in the function evaluation. This is however not the case for the backward
method where the recording requires the storage of all temporaries until the differentiation
is taking place and since most programs lead to quite a few temporary objects, the storage
cost can be high.

All this implementation of the management of dependent and independent variables to
lead to the computation of derivatives is provided in the three C++ header files of the
FADBAD software and need not be altered.

This last point is the main advantage of the Automatic Differentiation methodology,
i.e. the user does not need to implement code specific to the partial derivatives of a new
option payoff, for example, he just needs to call functions already implemented. This offers
significant flexibility to the user, especially when one wants to be able to change quickly

22

5. IMPLEMENTATION

and easily the option payoffs and the underlying models. We will see in chapter 6 how
Greeks can be computed in a displaced diffusion model with almost no change in our code.

We now present the specific implementations of the different ways to obtain accurate
Greeks in a Monte Carlo simulation, including several extracts of pseudo-code.

5.3.1 Forward mode

The Forward Automatic Differentiation (FAD) methodology can be implemented in two
different ways, either on the payoff or on the whole simulation.

The first one consists of using the Automatic Differentiation software on each payoff
computed by a single Monte Carlo simulation, i.e. we run the Automatic Differentiation
software on a single function, which takes as input the state vector at the final time (this is
essentially the payout function), and before that, the final state vector has been computed
by another function, independently of the Automatic Differentiation software (i.e. this long
function does not need to be a template function able to support the FAD template type
“F<double>”). This first way is very fast for specific models where we know the derivatives
of the final state vector with respect to the input parameters (which are the parameters we
want to obtain the derivatives with respect to).

Indeed, as described in Glasserman (2004) [11], the chain rule for differentiation applied
on a payoff P , a state vector S, and a vector of input parameters θ = S(0) gives:

dP

dθ
=

dP

dS(0)
=

dP

dS(T)

dS(T)

dS(0)
, (5.9)

with T being the maturity of the option and 0 the initial time.

As a consequence, we can use the FAD methodology to get dP/dS(T) for any arbitrary
payoff but use a hand-coded formula to get dS(T)/dS(0) for simple cases where we know
analytical formulae for the derivatives of the final state vector with respect to the initial
input parameters. We illustrate this idea by the following pseudo-code:

FAD on each payoff

for(int i=0; i<n_MC; i++){

vector<double> ST=function(theta); //operates on doubles

dST_dtheta=Hand_coded_formula(theta,ST);

//we create the F<double> objects for the FAD methodology

vector<F<double> > F_ST(ST);

dP_dST=FAD_on_each_payoff(F_ST); //operates on F<double>’s

//we compute the sensitivities by the chain rule

dP_dtheta=dP_dST * dST_dtheta;

}

//we are out of the Monte Carlo loop:

//we can take the average over all simulations to obtain

//the final price and the final sensitivities.

23

5. IMPLEMENTATION

The second way of using the FAD methodology consists of calling the Automatic Dif-
ferentiation software on one entire simulation of the price. This way is totally generic and
need not know anything about the computation of the derivatives of the option payoff or
the computation of dS(T)/dS(0).

We illustrate this idea with the following pseudo-code that displays in particular the
precise implementation of the Forward Automatic Differentiation (and the management of
the new template type “F<double>” of the FADBAD software):

FAD on the whole simulation

double price; //price of the option

vector<double> dprice_dtheta(n_theta); //vector of future sensitivities

vector<F<double> > F_theta(n_theta); //vector of parameters

for(int j=0; j<n_alpha; j++){

F_theta[j].diff(j,n_theta);

//declare the parameters with respect to which

//we want to compute the derivative of the price

}

F<double> F_payoff;

for(int i=0; i<n_MC; i++)){ //loop on the Monte Carlo simulations

F_payoff=long_function(F_theta,other);

//computes the price associated to one path

price=F_payoff.x();

//evaluates the value of the price and converts it into a double

for(int j=0; j<n_theta; j++){

dprice_dtheta[j]=F_payoff.d(j);

//computes the sensitivities associated to one path

}

}

5.3.2 Adjoint mode

In this subsection, we present the implementation of the Adjoint (or Backward) Auto-
matic Differentiation (BAD) methodology.
We essentially consider the two different ways, as described in the case of the FAD method-
ology, to implement the BAD methodology “on each payoff” and “on each simulation”.

Adjoint on each payoff

This method uses the BAD methodology to compute the derivatives of the payoff with
respect to the initial input parameters via the chain rule. This implies that we compute the
derivatives of the final state vector with respect to the initial input parameters by hand-
coded formulae and we call the FADBAD software in an adjoint mode for computing the

24

5. IMPLEMENTATION

derivatives of the payoff with respect to the final state vector.

This idea will be very fast in cases where we know explicit formulae for the derivatives
dS(T)/dθ, since we do not need to create too many temporary objects useful for the back-
ward sweep of the adjoint mode. We will create temporary objects only for the last function
that computes the derivatives of the payoff with respect to the final state vector S(T).

Adjoint on the whole simulation

By contrast with the previous method, the BAD methodology applied on the whole simu-
lation computes the derivatives of the payoff P with respect to the initial input parameters
θ completely by the adjoint mode, i.e. the Automatic Differentiation software is called on
the complete function that computes the payoff from the initial input parameters, and not
only from the final state vector S(T).

We illustrate this method with the following pseudo-code that displays in particular the
precise implementation of the Backward (or adjoint) Automatic Differentiation (and the
use of the new template type “B<double>” of the FADBAD software).

double price; //price of the option

vector<double> dprice_dtheta(n_theta); //vector of future sensitivities

vector<B<double> > B_theta(n_theta); //vector of parameters

B<double> B_payoff;

for(int i=0; i<n_MC; i++)){ //loop on the Monte Carlo simulations

B_payoff=long_function(B_theta,other);

//computes the price associated to one path

B_payoff.diff(0,1);

price=B_payoff.x();

//evaluates the value of the price and converts it into a double

for(int j=0; j<n_theta; j++){

dprice_dtheta[j]=B_theta[j].d(0);

//computes the sensitivities associated to one path

}

}

//we are out of the Monte Carlo loop:

//we can take the average over all simulations to obtain

//the final price and the final sensitivities.

We stress again that all the methods presented in this sub-section work in an automated
fashion and do not require the user to write new code if the option payoff changes (nor
if the model changes for the “Forward on the whole simulation” and “Adjoint on the
whole simulation” methodologies). In the next chapter, we will present different numerical
examples to illustrate the two different methodologies introduced in chapters 3 and 4 of
this dissertation.

25

6 Numerical Examples

In this chapter, we illustrate the partial proxy scheme and the Automatic Differentiation
methodologies with several numerical examples. In particular, we stress the case of a Vanilla
Caplet in the LIBOR market model for which price and sensitivities can be benchmarked
by the results computed from the Black formula. We also look at more complicated op-
tions such as Binary Cash or Nothing basket options and Forward Starting Digital Caplets.
Finally, we test the Automatic Differentiation methodology with a Vanilla Caplet in a dis-
placed diffusion version of the LIBOR market model.

All these examples have a large number of parameters, such as the number of forward
LIBORs, the number of Monte Carlo simulations, the initial values of the forward LIBORs
and their volatilities, the presence of a discount factor or not and the ramp width (as de-
fined in section 1). We try to explore their respective impacts on our results in order to
determine the strengths and weaknesses of the methodologies.

In this context, our reference or base-case for both the accuracy of the results and the
computational time will always be the “bump-and-revalue” methodology, as described in
section 5.1.

6.1 First tests of the methods

In this section, we test the forward Automatic Differentiation methodology in the case of a
Vanilla call option under the Black Scholes model.
We have chosen this basic example to be able to verify the results and to demonstrate the
correctness of the algorithms that we have developed since we know analytical formulae for
both the price and the sensitivities. Several methods are displayed here:

1. Analytical: Analytical price, analytical Greeks (Black formula).

2. Anal.+FD: Analytical price, Greeks obtained by two-sided finite difference.

3. Simple MC: Simple Monte Carlo simulation (price and Greeks determined by hand-
coded formulae in a log-Euler scheme)

4. MC+ramp: Monte Carlo simulation with a ramp applied on the payoff to obtain an
estimate of the gamma.

5. FAD Simu: Forward Automatic Differentiation on the whole Monte Carlo simulation.

6. FAD Payoff: Forward Automatic Differentiation on the payoff.

We have used the following parameters:

Risk-free interest rate r = 0.05
Dividend yield q = 0.0
Volatility σ = 0.25
Maturity T = 1 year
Spot S = 100

26

6. NUMERICAL EXAMPLES

Strike K = 95
Ramp width h = 0.003
Proportional bump size in finite differences: shift = 1%
Number of Monte Carlo simulations: nMC = 10 000
Number of time-steps: nStep = 5.

The results are displayed in table (1).

Table 1: Results of the test for a Vanilla Call Option

Method 1 2 3 4 5 6
Analytical Anal.+FD Simple MC MC+ramp FAD Simu FAD Payoff

Price 15.047058 15.047058 15.046813 15.046813 15.046813 15.046813
Delta 0.702004 0.701935 0.701980 0.701980 0.701980 0.701980

Gamma 0.0138654 0.0138639 - 0.014 - -
Vega 34.663590 34.663210 34.665089 34.665089 34.665089 34.665089
Rho 55.143784 55.143652 - - 55.1512 55.1512

Comments on the price Compared to the analytical result, the prices computed by
Monte Carlo simulation or Forward Automatic Differentiation have an absolute error of

(15.047058− 15.046813) = 2.45 · 10−4

for 10 000 paths compared with the exact price of the analytical method. We are interested
to see the impact of the number of simulations on the error in the Monte Carlo simulation
estimate of the price of the option.

We plot in figure (1) the absolute error ε = PAnal − PMC, between the analytical price
and the (simple) Monte Carlo simulation estimate of the price, and the standard error of
the Monte Carlo estimate of the price, as a function of log10(nMC), all other parameters
fixed.

We take values for nMC going from 102 to 108. The absolute error is represented
by dots. We note that the standard error, represented by triangles, decreases with the
logarithm of the number of simulations. In fact, we see that the standard errors in figure
(1) are consistent with being proportional to 1/

√
nMC .

Comments on the sensitivities All the available sensitivities are very accurate. We
note in particular that we have obtained Rho (the sensitivity of the option price with respect
to changes in the risk-free interest rate) very easily thanks to the AD software. AD software
offers the flexibility to allow the user to implement very quickly an extra sensitivity.

27

6. NUMERICAL EXAMPLES

Figure 1: Absolute and Standard Errors in Price

6.2 Particular case of a Vanilla Caplet

In this section, we present several tests done on Vanilla caplets using our implementation
of the LIBOR market model.

6.2.1 Test on 12 LIBORs

Description of the test

We consider 12 LIBORs spanning a time period from time zero (today) out to 13 years.
Each LIBOR is assumed to be one year in length (in practice, typical LIBOR periods are
3 months or six months but our aim, in this dissertation, is not to replicate every market
convention but to produce illustrative results for both typical and untypical cases).

The LIBOR which sets (or fixes) at time zero (today) is denoted by L0[−1] and is
assumed to be known. It is the known interest rate applicable to the period from time
T0 ≡ 0 until the time one year from now i.e. from time T0 until T1.

We let L0[i − 1], for i ≥ 1, be the forward LIBOR rate, as observed at time zero, for
the period [Ti, Ti+1]. So, for example, L0[0] is the forward LIBOR rate, as observed at time
zero, applicable from one year from now until two years from now i.e. from time T1 until T2,
L0[1] is the forward LIBOR rate, as observed at time zero, applicable from two years from
now until three years from now i.e. from time T2 until T3 and L0[11] is the forward LIBOR
rate, as observed at time zero, applicable from twelve years from now until thirteen years
from now i.e. from time T12 until T13. In a similar fashion, We let Lt[i − 1], for i ≥ 1, be

28

6. NUMERICAL EXAMPLES

the forward LIBOR rate, as observed at time t (with 0 ≤ t ≤ Ti), for the period [Ti, Ti+1].
Clearly, at time Ti, the LIBOR rate for the period [Ti, Ti+1] fixes.

Here is a diagram with the time axis (in years) and the time-line of the forward LIBOR
rates observed at time 0: We consider a caplet written on the final LIBOR i.e. written

on the LIBOR rate LT12 [11] for the period from twelve years from now until thirteen years
from now which fixes twelve years from now i.e. the LIBOR applicable rate from time T12

until T13 which fixes at T12. The payoff of the caplet is max(0, LT12 [11] −K), where K is
the strike. In practice, a vanilla caplet on the LIBOR rate LT12 [11] would make the payoff
of max(0, LT12 [11] at time T13. A Monte Carlo simulation, pricing this caplet would then
discount the payoff from time T13 back to time T0 ≡ 0. In general terms, the presence (or
absence) of the discounting term is not central to our analysis (i.e. to comparing caplet
prices and Greeks obtained by different methods). Therefore, in some of our numerical
examples, we will omit all discounting. We will do this in this particular example. When
we do this, we will indicate this to the reader by referring to a flag “Discounting present”
which will be set to “no”.

Parameters used for the test

Number of LIBORs n = 12
First LIBOR L0[−1] = 0.05
Initial forward LIBORs L0 = [0.05, ..., 0.05]
vol = [0.2, ..., 0.2]
Strike K = 0.05445
Discounting present: no
Number of Monte Carlo simulations: 5000
Seed of the Mersenne Twister Random Numbers Generator: 6

Results

We have obtained our results displayed in table 2 by two different methods: the Black
formula applied to a Vanilla caplet (with no discounting) and a Monte Carlo simulation
using the log-Euler approximation of the LMM SDE.

Table 2: Prices of the option

Method Price Std error

Exact 0.01373 0
Approx 0.01362 0.00044

29

6. NUMERICAL EXAMPLES

Table 3: Computational times

Method Time (ms)

Exact 16
Approx 7078

Comments We can see that the price obtained from the log-Euler scheme is consistent
with the analytical value, taking into account the standard error.
The computational time of the Black formula (referred to as ”Exact” in tables 2 and 3) is
unbeatable since we have a simple analytical formula whereas the Monte Carlo simulation
(referred to as ”Approx”) used 5 000 paths with many random numbers being generated
per path. Of course, Monte Carlo simulation is much more flexible and can be used to price
options for stochastic processes and non-standard payoffs for which no analytical formula
is available.

6.2.2 Test on 4 LIBORs

In this sub-section, we consider the computation of Greeks -specifically the deltas and the
vegas. We stay in the context of Vanilla caplets in order to be able to evaluate the accuracy
of our Monte Carlo results compared with analytical formulae.

We test our program in the case of 4 LIBORS spanning time periods of one year each.
We consider a caplet written on the final LIBOR i.e. written on the LIBOR rate LT4 [3]
for the period from four years from now until five years from now which fixes four years
from now. The payoff of the caplet is max(0, LT4 [3]−K), where K is the strike. As in the
previous sub-section, we will omit all discounting i.e. the flag “Discounting present” will be
set to “no”. We compute the deltas and vegas of the caplet using all the different methods
that we consider in this dissertation (AD stands for Automatic Differentiation) and which
have been presented in chapter 5:

• Fwd Payoff : AD in forward mode applied on each simulated payoff.

• Fwd simu: AD in forward mode applied on the whole simulation.

• Adj Payoff : AD in adjoint mode on each payoff.

• Adj simu: AD in adjoint mode on the whole simulation.

• Bumping : A two-sided finite difference with a proportional bump size of 1% as de-
scribed in section 5.1.

Henceforth, we will denote by “Delta i” the sensitivity of the price with respect to the
LIBOR L0[i].

Parameters used for the test

Number of LIBORs n = 4
First LIBOR L0[−1] = 0.1
Initial forward LIBORs L0 = [0.08, 0.018, 0.04, 0.055]

30

6. NUMERICAL EXAMPLES

V ol = [0.25, 0.02, 0.44, 0.2]
Strike K = 0.05445
Discounting present: no
Number of simulations: 100000

We remark that the initial forward LIBORs and their volatilities are not at all typical
of those that might be observed in practice. Nonetheless, we should still be able to see close
agreement between the prices and Greeks computed by the different possible methods.

Results of the simulation

Table 4: Price of the caplet

Method Price Std error

Black 0.008953 0
Proxy 0.008954 5.26E-05

Fwd payoff 0.008954 5.26E-05
Fwd simu 0.008954 5.26E-05
Adj payoff 0.008954 5.26E-05

Adj simu 0.008954 5.26E-05
Bumping 0.008954 5.26E-05

Table 5: Deltas of the caplet

Method Delta 0 Delta 1 Delta 2 Delta 3

Black zero zero zero 0.589059
Proxy 0.001922 0.003645 -0.00193 0.589183

Fwd payoff 0 0 0 0.588435
Fwd simu 0 0 0 0.588435
Adj payoff 0 0 0 0.589175

Adj simu 0 0 0 0.589175
Bumping 0 0 0 0.588321

In table 5, we present the deltas of the caplet, i.e. the estimates of the partial derivatives
of the caplet with respect to L0[0], L0[1], L0[2] and L0[3].

We remark that it is clear that the price of the caplet has zero sensitivity to L0[0], L0[1]
and L0[2] since L0[0], L0[1] and L0[2] play no role in determining its price (given that we
are omitting discounting in this example). This is reflected in the results using the Black
formula and in all four methods (Fwd payoff, Fwd simu, Adj payoff, Adj simu) which use
pathwise differentiation. The Proxy method gives non-zero values for the deltas with re-
spect to L0[0], L0[1] and L0[2]. The values are very small but nonetheless non-zero. This
is, of course, an unwelcome drawback of the Proxy scheme methodology.

31

6. NUMERICAL EXAMPLES

All six methods produce very, very close agreement for the delta (i.e. Delta 3) with
respect to L0[3].
We note that, in fact, the value of Delta 3 obtained by the two adjoint methods should be
the same as the value of Delta 3 obtained by the two forward methods (see section 4.3). We
see from table 5 that this is not the case. The prices are in agreement and the discrepancies
in Delta 3 are small but, nevertheless, the fact is that the values of Delta 3 should also
be in perfect agrement. We investigated this and the only explanation we could determine
is that there may be a bug in the Automatic Differentiation software. The computational

Table 6: Elapsed times during the simulations

Method time (ms)

Black 16
Proxy 7468

Fwd payoff 32578
Fwd simu 32484
Adj payoff 59484

Adj simu 60672
Bumping 4812

times displayed in table 6 can be interpreted as if the bump-and-revalue method is the
best method but we need to bear in mind that it is an optimised version. Nevertheless,
the proxy scheme methodology seems to be very fast whereas the AD software introduces
a great slowdown in our program. Moreover, the adjoint mode is slower than the forward
mode, certainly due to the storage of the temporary variables needed for the backward
sweep. We also note that using AD only on the payoff or on the whole simulation gives
almost the same results for either the FAD or the BAD methodologies.

6.3 Binary Cash or Nothing basket option

We now consider an option with the following payoff, defined in a context of n LIBORs:

I 1

n

n−1∑
i=0

LTn [i]−K > 0


,

where I is the indicator function, K the strike and LTn [i] is the ith forward LIBOR that
sets at time Ti+1 but as seen at time Tn. We recall that Lt[i] = LTi+1 [i] if t ≥ Ti+1 so that
LTn [i] = LTi+1 [i] for each i ∈ {0, . . . , n− 1}.
The payoff is paid at time Tn, the time at which the last forward LIBOR sets.
This option could be described as a Binary Cash or Nothing option on an equally weighted
basket of n LIBORs.

We test our program in the case of 3 LIBORs. We compute the deltas and the vegas
via all the possible methods, that we recall here:

• Fwd Payoff : AD in forward mode applied on each simulated payoff.

32

6. NUMERICAL EXAMPLES

• Fwd simu: AD in forward mode applied on the whole simulation.

• Adj Payoff : AD in adjoint mode on each payoff.

• Adj simu: AD in adjoint mode on the whole simulation.

• Bumping : A two-sided finite difference with a proportional bump size of 1% as de-
scribed in section 5.1.

Parameters used for the Test

Number of LIBORs n = 3
First LIBOR L0[−1] = 0.1
Initial LIBORs L0 = [0.08, 0.018, 0.04]
Discounting present: no
Strike K = 0.05445
Payoff : I(∑n

i=1
1
n
LT [i]−K>0) where we applied a ramp with a ramp width h = 0.0005.

Volatility matrix

0.25 0 0
0 0.02 0
0 0 0.44

Correlation matrix

1 0 0
0 1 0
0 0 1


Number of Monte Carlo simulations: 5 000 000
Seed of the Mersenne Twister Random Numbers Generator: 47

Table 7: Computation times

Method Time (ms)

Fwd payoff 940454
Fwd simu 944281
Adj payoff 1446031

Adj simu 1452765
Bumping 429782

Interpretation

The results displayed in tables 7, 8, 9 and 10 are very encouraging. They show that the
different methods give some very close results when applied in the same context.

33

6. NUMERICAL EXAMPLES

Table 8: Prices

Method Price Std error

Fwd payoff 0.423945 0.00022
Fwd simu 0.423945 0.00022
Adj payoff 0.423945 0.00022

Adj simu 0.423945 0.00022
Bumping 0.423945 0.00022

Table 9: Deltas

Method Delta 0 Std error Delta 1 Std error Delta 2 Std error

Fwd payoff 11.97986 0.041306 11.38156 0.038641 9.783272 0.03627
Fwd simu 11.97986 0.041306 11.38156 0.038641 9.783272 0.03627
Adj payoff 12.06618 0.006224 11.45959 0.005911 9.838732 0.005076

Adj simu 12.06619 0.006224 11.45959 0.005911 9.838734 0.005076
Bumping 11.98548 0.032037 11.39005 0.037045 9.792603 0.032277

Table 10: Vegas

Method Vega 0 Std error Vega 1 Std error Vega 2 Std error

Fwd payoff 0.140032 0.002353 0.002001 0.000993 -0.30462 0.001309
Fwd simu 0.140032 0.002353 0.002001 0.000993 -0.30462 0.001309
Adj payoff 0.142472 7.34E-05 0.00283 1.38E-06 -0.30745 0.000158

Adj simu 0.142472 7.34E-05 0.00283 1.38E-06 -0.30745 0.000158
Bumping 0.140658 0.002236 0.002024 0.000991 -0.30518 0.001258

The bump-and-revalue method (referred to as “Bumping” in the tables) allows us to vali-
date the accuracy of the results which use the Automatic Differentiation methodology.
We stress again that the bump-and-revalue method is implemented in an optimised way,
which explains why this method seems to be so efficient compared to those that use Auto-
matic Differentiation.

Also, we observe that, although the values of the Greeks obtained by the two adjoint
methods should agree perfectly with those obtained by the two forward methods, there are,
in fact, discrepancies. We have omitted the results for the case of the Proxy scheme since
they were of disappointing accuracy.

6.4 Computational efficiency

The computational efficiency of the Adjoint Automatic Differentiation methodology seems
to be disappointing for the moment but we need to consider a case with a larger number
of LIBORs and also to consider the possibility of computing all Greeks in the same time.
This idea is illustrated in the following test.

34

6. NUMERICAL EXAMPLES

We consider 15 LIBORs (each over one year) and we compute deltas and vegas using
two different methods: on one hand, bumping using a two-sided finite difference and re-
evaluating and on the other hand, the adjoint mode operated on each payoff.

We plot the graph of the relative computational time in function of the number of sen-
sitivities we want to compute (between 0 and 30, since we have 15 potential deltas and 15
potential vegas). The relative time is the time spent to compute the sensitivities divided
by the time spent to compute the price alone.

The option considered is a caplet on the last LIBOR, ie the LIBOR that sets 15 years
from now and pays 16 years from now as observed at its fixing time and which is denoted
by LT15 [14]. The payoff of the option is therefore (LT15 [14] −K)+, where K is the strike
chosen to be 0.99 · L0[14].
Initially, we have set all the parameters at standard values: 105 simulations, one timestep
per LIBOR interval, initial LIBORs all at 5%, initial volatilities all at 20%, no correlation
and no discount factor applied on the payout function.

The results displayed here show the advantages of an adjoint mode when we need to
compute a large number of sensitivities.

Figure 2: Computational Efficiency

The triangles represent the adjoint mode whereas the dots are used for the bump-and-
revalue.
We notice that the computational time of the adjoint mode does not depend on the number

35

6. NUMERICAL EXAMPLES

of sensitivities we want to compute. It is essentially always equal to one. It does not require
any additional computational time to obtain 30 sensitivities compared to one sensitivity.

By contrast, bump-and-revalue become very inefficient when one wants to compute a
large number of sensitivities. The cost in computational time is proportional to the number
of sensitivities.

In this particular example, we have started by computing each delta followed by each
vega so the discontinuity that we can notice at the 15th sensitivity corresponds to the tran-
sition between a new delta computation and a new vega computation.
This means that the bump-and-revalue methodology, computing one vega is slower than
computing one delta but it does not affect our conclusion concerning the efficiency of the
adjoint mode.

If we now consider the absolute times of computation needed for these results, we ob-
serve that the AD methodology becomes quicker than the bump-and-revalue method as
soon as we reach the number of 15 sensitivities. Before this time, the bump-and-revalue
method is faster but beyond that time, the AD software is more efficient.

6.5 Forward Starting Digital Caplet

In this section, we consider a different type of payoff: a forward starting digital caplet.

This option is essentially a Binary Cash or Nothing caplet where the underlying is some
LIBOR rate observed at its fixing time and whose payoff is made at the end of the accrual
period of that given LIBOR, but where the strike of the caplet is the LIBOR rate for an
earlier period observed at its fixing time. In other words, the strike of the caplet is not
known at time zero.

If we consider n LIBORs and two indices ifinal and iprevious for two different forward
LIBORs, a final one (possibly before the nth i.e. the last forward LIBOR) and an earlier
one, then the payout of a forward starting digital caplet with multiplicative constant k
would be:

I(
LTifinal

[ifinal−1]≥ k ·LTiprevious
[iprevious−1]

)
which is paid at time Tifinal+1, the time which corresponds to the end of the accrual period
for the LIBOR which sets at Tifinal

, and where k is a constant which has the form of a
multiplicative strike term.

For our example, we consider an option in which ifinal = n and iprevious = n − 1. The
payoff of the option is at time Tn+1.
We also chose the strike k to be proportional to the ratio of the two forward LIBORs
considered, evaluated at time zero, i.e.

k = 1.0005
L0[n− 1]

L0[n− 2]
.

36

6. NUMERICAL EXAMPLES

Parameters used for the test

Number of Libors n = 8
First Libor L0[−1] = 0.02
Initial Libors L0 = [0.021, 0.022, 0.023, 0.024, 0.025, 0.026, 0.025, 0.024]

We note that the initial LIBORs slightly increase and then slightly decrease, which gives
the yield curve a hump-shape which is not uncommon, in practice.

Discounting Present: yes
Payoff : I(

LT8
[7]≥1.0005L0[7]

L0[6] ·LT7
[6]

) smoothed by a ramp of width h (h will be a parameter

of interest in the following series of tests).

Volatility matrix



0.25 0 0 0 0 0 0 0
0 0.28 0 0 0 0 0 0
0 0 0.31 0 0 0 0 0
0 0 0 0.3 0 0 0 0
0 0 0 0 0.29 0 0 0
0 0 0 0 0 0.28 0 0
0 0 0 0 0 0 0.27 0
0 0 0 0 0 0 0 0.26


Likewise, the initial volatilities slightly increase and then decrease with increasing LIBOR
tenor. In practice, this humped volatility structure is very common. The correlation matrix
does not change and remains the identity matrix.

Number of Monte Carlo simulations: 5000
Seed of the Mersenne Twister Random Numbers Generator: 2

Results

As well as computing the price, the deltas and the vegas, we will also consider the impact
of using different values of the ramp width h.
The results are displayed in tables 11, 12, 13 and 14 in the following pages. We use ramp
widths of h = 0.00005 (table 11), h = 0.0005 (table 12), h = 0.005 (table 13) and h = 0.05
(table 14).

We observe that as the ramp width h increases, the price of the forward starting digital
caplet increases whereas the standard error of the price decreases. This is highly intuitive
- as the ramp width h increases - there will be more paths which fall into the ramp region
where the payoff (before discounting) is strictly between zero and one.

Note that the computation times are essentially independent of the ramp width (and
therefore we omit them for brevity).

Note that Delta 0 through to Delta 6 correspond to LIBORs which do not appear in
the option payoff. They impact the price of the option only through the discounting term.
These deltas increase in absolute value as the ramp width increases. This is intuitive since

37

6. NUMERICAL EXAMPLES

Table 11: Case h = 0.00005

Method Adjoint Forward Bumping

Price 0.396742 0.396742 0.396742
Std error 0.005741 0.005741 0.005741

Time (ms) 79888 37655 37908

Delta 0 -0.389625 -0.388582 -0.388582
Std error 0.006360 0.005623 0.005623

Delta 1 -0.389244 -0.388202 -0.388202
Std error 0.006354 0.005618 0.005618

Delta 2 -0.388864 -0.387822 -0.387822
Std error 0.006347 0.005612 0.005612

Delta 3 -0.388484 -0.387443 -0.387443
Std error 0.006341 0.005607 0.005607

Delta 4 -0.388105 -0.387065 -0.387065
Std error 0.006335 0.005601 0.005601

Delta 5 -0.387727 -0.386688 -0.386688
Std error 0.006329 0.005596 0.005596

Delta 6 -20.63796 -17.81208 -14.10596
Std error 0.334569 7.671166 2.047353

Delta 7 20.70210 17.76243 13.86244
Std error 0.335789 7.989556 2.132683

Vega 0 0 0 0
Std error 0 0 0

Vega 1 0 0 0
Std error 0 0 0

Vega 2 0 0 0
Std error 0 0 0

Vega 3 0 0 0
Std error 0 0 0

Vega 4 0 0 0
Std error 0 0 0

Vega 5 0 0 0
Std error 0 0 0

Vega 6 0.736709 0.674112 0.601339
Std error 0.009948 0.278434 0.153592

Vega 7 -0.690191 -0.517528 -0.646032
Std error 0.010793 0.291770 0.159834

38

6. NUMERICAL EXAMPLES

Table 12: Case h = 0.0005

Method Adjoint Forward Bumping

Price 0.397159 0.397159 0.397159
Std error 0.005719 0.005719 0.005719

Time (ms) 79469 36750 37765

Delta 0 -0.38986 -0.38899 -0.38899
Std error 0.006364 0.005602 0.005602

Delta 1 -0.38948 -0.38861 -0.38861
Std error 0.006358 0.005596 0.005596

Delta 2 -0.3891 -0.38823 -0.38823
Std error 0.006352 0.005591 0.005591

Delta 3 -0.38872 -0.38785 -0.387851
Std error 0.006346 0.005585 0.005585

Delta 4 -0.38834 -0.38747 -0.387472
Std error 0.006339 0.00558 0.00558

Delta 5 -0.38796 -0.38709 -0.387095
Std error 0.006333 0.005574 0.005574

Delta 6 -13.6589 -14.1077 -13.8602
Std error 0.228331 1.956327 1.63694

Delta 7 13.43312 13.89319 15.24871
Std error 0.224873 2.036517 1.706187

Vega 0 0 0 0
Std error 0 0 0

Vega 1 0 0 0
Std error 0 0 0

Vega 2 0 0 0
Std error 0 0 0

Vega 3 0 0 0
Std error 0 0 0

Vega 4 0 0 0
Std error 0 0 0

Vega 5 0 0 0
Std error 0 0 0

Vega 6 0.647035 0.609805 0.555158
Std error 0.010639 0.0939 0.093906

Vega 7 -0.69084 -0.65278 -0.59629
Std error 0.011361 0.098822 0.098082

39

6. NUMERICAL EXAMPLES

Table 13: Case h = 0.005

Method Adjoint Forward Bumping

Price 0.39828 0.39828 0.39828
Std error 0.00551 0.00551 0.00551

Time (ms) 79469 36563 38531

Delta 0 -0.39081 -0.39009 -0.390088
Std error 0.006379 0.005396 0.005396

Delta 1 -0.39043 -0.38971 -0.389706
Std error 0.006373 0.005391 0.005391

Delta 2 -0.39005 -0.38933 -0.389325
Std error 0.006367 0.005386 0.005386

Delta 3 -0.38967 -0.38895 -0.388945
Std error 0.00636 0.005381 0.005381

Delta 4 -0.38929 -0.38857 -0.388566
Std error 0.006354 0.005375 0.005375

Delta 5 -0.38891 -0.38819 -0.388187
Std error 0.006348 0.00537 0.00537

Delta 6 -13.2552 -12.6874 -11.9083
Std error 0.214462 0.566646 0.551984

Delta 7 12.90796 12.36678 13.15594
Std error 0.209098 0.588098 0.573804

Vega 0 0 0 0
Std error 0 0 0

Vega 1 0 0 0
Std error 0 0 0

Vega 2 0 0 0
Std error 0 0 0

Vega 3 0 0 0
Std error 0 0 0

Vega 4 0 0 0
Std error 0 0 0

Vega 5 0 0 0
Std error 0 0 0

Vega 6 0.581029 0.569121 0.576536
Std error 0.009497 0.032016 0.030857

Vega 7 -0.62399 -0.60897 -0.61573
Std error 0.010184 0.033156 0.032196

40

6. NUMERICAL EXAMPLES

Table 14: Case h = 0.05

Method Adjoint Forward Bumping

Price 0.402491 0.402491 0.402491
Std error 0.003779 0.003779 0.003779

Time (ms) 81750 36766 37562

Delta 0 -0.39419 -0.39421 -0.394212
Std error 0.006434 0.003702 0.003702

Delta 1 -0.39381 -0.39383 -0.393826
Std error 0.006428 0.003698 0.003698

Delta 2 -0.39342 -0.39344 -0.393441
Std error 0.006421 0.003694 0.003694

Delta 3 -0.39304 -0.39306 -0.393057
Std error 0.006415 0.003691 0.003691

Delta 4 -0.39265 -0.39267 -0.392674
Std error 0.006409 0.003687 0.003687

Delta 5 -0.39227 -0.39229 -0.392291
Std error 0.006403 0.003684 0.003684

Delta 6 -9.8786 -9.84238 -9.05675
Std error 0.161635 0.118115 0.119338

Delta 7 9.398603 9.326458 10.10686
Std error 0.153365 0.122336 0.123562

Vega 0 0 0 0
Std error 0 0 0

Vega 1 0 0 0
Std error 0 0 0

Vega 2 0 0 0
Std error 0 0 0

Vega 3 0 0 0
Std error 0 0 0

Vega 4 0 0 0
Std error 0 0 0

Vega 5 0 0 0
Std error 0 0 0

Vega 6 0.2662 0.26663 0.266373
Std error 0.004347 0.006929 0.006909

Vega 7 -0.29576 -0.29498 -0.29454
Std error 0.004846 0.007064 0.007076

41

6. NUMERICAL EXAMPLES

it is clear that they should be proportional to the price (since they impact only through
the discounting term).

Clearly, Vega 0 through to Vega 5 should be (and, observing the tables, are) zero.

We can see that the choice of the ramp width clearly has an impact on the price, the
deltas and the vegas.

This leaves open the issue of how to optimally choose the ramp width: Choosing it too
large produces too much bias in the price (and hence also the deltas and vegas); choosing
it too small produces higher standard errors. In addition, any optimal choice should addi-
tionally depend upon the number of Monte Carlo simulations.
Increasing the number of Monte Carlo simulations will, all things being equal, tend to
increase the number of paths which fall into the ramp region where the payoff (before
discounting) is strictly between zero and one. It seems intuitive, therefore, than an opti-
mal choice of the ramp width would decrease with an increasing number of Monte Carlo
simulations.

6.6 Caplet in a displaced diffusion model

In this section, we try to give a more realistic example, using the Automatic Differentiation
methodologies for pricing and computing the Greeks of a Vanilla Caplet in a displaced
diffusion model with discounting present.

The displaced diffusion model essentially presents the same stochastic differential equa-
tion satisfied by the forward LIBORs as before, with the exception that a coefficient, say αi,
called the displaced diffusion coefficient, is added to the dynamics of each forward LIBOR
in the following fashion:

d(Li(t) + αi)

Li(t) + αi
= µi(t,L(t))dt+ σi(t)dWi(t), i = 0, . . . , n− 1. (6.1)

This essentially adds a local volatility function to the dynamics of forward LIBORs.
This is an extra complication that needs to be dealt with by the Automatic Differentiation
(FADBAD) software. It also adds realism to the LIBOR market model in that it allows
the model to fit a skew in implied caplet volatilities.

We consider 15 LIBORs and more realistic values for both the initial forward LIBORs
and their volatilities, choosing hump-shapes, as displayed in figures (3) and (4).
We choose the vector of displaced diffusion coefficients to have the same value of 4% for

all LIBORs, i.e. α = [0.04, . . . , 0.04]. The other parameters used for the test are displayed
below:

Parameters used for the test

Number of Libors n = 15
First Libor L0[−1] = 0.06
L0 = [0.061, 0.062, 0.063, 0.064, 0.065, 0.066, 0.067, 0.068, 0.069, . . .

42

6. NUMERICAL EXAMPLES

Figure 3: Initial forward LIBORs

Figure 4: Volatilities

43

6. NUMERICAL EXAMPLES

. . . 0.07, 0.0705, 0.07, 0.0702, 0.0701, 0.0699]
Volatilities: [0.25, 0.28, 0.31, 0.30, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.20, 0.19]
Correlation matrix: Identity
Discounting Present: Yes
Strike of the caplet: K = 0.99L0[n− 1] = 0.0702495
Number of Monte Carlo simulations: 100 000
Seed of the Mersenne Twister Random Numbers Generator: 21

Results

The results of this Monte Carlo simulation are displayed in tables 15, 16, 17 and 18.

Table 15: Price of the caplet

Method Black Adj simu Adj payoff Fwd simu Fwd payoff Bumping

Price 0.011201 0.011268 0.011268 0.011268 0.011268 0.011268
Std error 0 8.59E-05 8.59E-05 8.59E-05 8.59E-05 8.59E-05

Table 16: Computational times

Method Black Adj simu Adj payoff Fwd simu Fwd payoff Bumping

Time (ms) 32 3250594 3347031 1571093 1549297 3263703

Comments

The prices agree with the analytical formula (i.e the Black (1976) formula adjusted for the
displaced diffusion case) with a precision of 4 decimals and are consistent with the standard
errors reported.

Concerning the computational times, we still see that the adjoint mode is slower that
the forward mode since the number of LIBORs that we are considering is not large enough
to make the adjoint mode more efficient (as previously said, there is a fixed cost to run the
adjoint mode, lying in the storage of values during the forward sweep in order to build the
directed acylic graph needed for the backward sweep). The “bump-and-revalue” method
seems to stay competitive. However, we stress again that it is an optimised version which
would be difficult to generalize. For this case, where we have 15 LIBORs, the results for
the forward mode are the best in calculation time.

Table 17 has very satisfying results. Indeed all the results displayed for the deltas are
consistent with their respective standard errors. Here again, the values obtained with the
forward mode seem better than the one obtained with the adjoint mode. This is difficult
to interpret (since the values obtained by the forward mode and the adjoint mode should
be the same) but we suspect is due to a bug in the Automatic Differentiation software.

The vegas displayed in table 18 are accurate. The zero values for Vega 0 to Vega 13
show that there is no spurious noise disrupting the accuracy. Vega 14 (which is the partial

44

6. NUMERICAL EXAMPLES

Table 17: Deltas and standard errors

Method Black Adj simu Adj payoff Fwd simu Fwd payoff Bumping

Delta 0 -0.01056 -0.01066 -0.01066 -0.01062 -0.01062 -0.01062
Std error 0 3.89E-05 3.89E-05 8.10E-05 8.10E-05 8.10E-05

Delta 1 -0.01055 -0.01065 -0.01065 -0.01061 -0.01061 -0.01061
Std error 0 3.89E-05 3.89E-05 8.09E-05 8.09E-05 8.09E-05

Delta 2 -0.01054 -0.01064 -0.01064 -0.0106 -0.0106 -0.0106
Std error 0 3.89E-05 3.89E-05 8.08E-05 8.08E-05 8.08E-05

Delta 3 -0.01053 -0.01063 -0.01063 -0.01059 -0.01059 -0.01059
Std error 0 3.88E-05 3.88E-05 8.07E-05 8.07E-05 8.07E-05

Delta 4 -0.01052 -0.01062 -0.01062 -0.01058 -0.01058 -0.01058
Std error 0 3.88E-05 3.88E-05 8.07E-05 8.07E-05 8.07E-05

Delta 5 -0.01051 -0.01061 -0.01061 -0.01057 -0.01057 -0.01057
Std error 0 3.88E-05 3.88E-05 8.06E-05 8.06E-05 8.06E-05

Delta 6 -0.0105 -0.0106 -0.0106 -0.01056 -0.01056 -0.01056
Std error 0 3.87E-05 3.87E-05 8.05E-05 8.05E-05 8.05E-05

Delta 7 -0.01049 -0.01059 -0.01059 -0.01055 -0.01055 -0.01055
Std error 0 3.87E-05 3.87E-05 8.04E-05 8.04E-05 8.04E-05

Delta 8 -0.01048 -0.01059 -0.01059 -0.01054 -0.01054 -0.01054
Std error 0 3.86E-05 3.86E-05 8.04E-05 8.04E-05 8.04E-05

Delta 9 -0.01047 -0.01058 -0.01058 -0.01053 -0.01053 -0.01053
Std error 0 3.86E-05 3.86E-05 8.03E-05 8.03E-05 8.03E-05
Delta 10 -0.01046 -0.01057 -0.01057 -0.01053 -0.01053 -0.01053
Std error 0 3.86E-05 3.86E-05 8.03E-05 8.03E-05 8.03E-05
Delta 11 -0.01047 -0.01058 -0.01058 -0.01053 -0.01053 -0.01053
Std error 0 3.86E-05 3.86E-05 8.03E-05 8.03E-05 8.03E-05
Delta 12 -0.01047 -0.01057 -0.01057 -0.01053 -0.01053 -0.01053
Std error 0 3.86E-05 3.86E-05 8.03E-05 8.03E-05 8.03E-05
Delta 13 -0.01047 -0.01057 -0.01057 -0.01053 -0.01053 -0.01053
Std error 0 3.86E-05 3.86E-05 8.03E-05 8.03E-05 8.03E-05
Delta 14 0.218332 0.219032 0.219032 0.218867 0.218867 0.218912
Std error 0 0.0008 0.0008 0.0011 0.0011 0.001099

45

6. NUMERICAL EXAMPLES

Table 18: Vegas and standard errors

Method Black Adj simu Adj payoff Fwd simu Fwd payoff Bumping

Vega 0 0 0 0 0 0 0
Std error 0 0 0 0 0 0

Vega 1 0 0 0 0 0 0
Std error 0 0 0 0 0 0

Vega 2 0 0 0 0 0 0
Std error 0 0 0 0 0 0

Vega 3 0 0 0 0 0 0
Std error 0 0 0 0 0 0

Vega 4 0 0 0 0 0 0
Std error 0 0 0 0 0 0

Vega 5 0 0 0 0 0 0
Std error 0 0 0 0 0 0

Vega 6 0 0 0 0 0 0
Std error 0 0 0 0 0 0

Vega 7 0 0 0 0 0 0
Std error 0 0 0 0 0 0

Vega 8 0 0 0 0 0 0
Std error 0 0 0 0 0 0

Vega 9 0 0 0 0 0 0
Std error 0 0 0 0 0 0
Vega 10 0 0 0 0 0 0

Std error 0 0 0 0 0 0
Vega 11 0 0 0 0 0 0

Std error 0 0 0 0 0 0
Vega 12 0 0 0 0 0 0

Std error 0 0 0 0 0 0
Vega 13 0 0 0 0 0 0

Std error 0 0 0 0 0 0
Vega 14 0.056652 0.057836 0.057836 0.057349 0.057349 0.057345

Std error 0 0.000211 0.000211 0.000736 0.000736 0.000736

46

6. NUMERICAL EXAMPLES

derivative of the price with respect to the last LIBOR), shows only a thin consistency
with the standard errors reported for the case of the adjoint modes. Moreover, both the
forward modes and the “bump-and-revalue” methods only possess two decimals of precision,
compared to the analytical value of the Black formula.

6.7 Final comments on the AD software efficiency

We conclude this chapter of numerical examples with a test on the efficiency of the AD
software.

We consider a LIBOR market model with a variable number of LIBORs (each over one
year) but with a constant number of Monte Carlo simulations of nMC = 10. We allow
the number n of LIBORs to vary from 10 to 130. The option is a Vanilla caplet on the
last LIBOR with initial forward rates at 5%, initial volatilities at 25% and for each n, we
compute all the deltas and vegas available via both the bump-and-revalue and the FAD
methodologies.

Figure 5: Computational times in function of the number of LIBORs

The results are displayed graphically in figure (5). We can see that the efficiency of the
FAD is real. The FAD is represented by triangles and is far quicker than the bump-and-
revalue method represented by dots as the number of LIBORs n becomes large. Since we
consider n LIBORs, we compute 2n sensitivities for each different n and, as soon as we
need more than 100 Greeks (i.e. n = 50), the FAD methodology is more efficient than the

47

6. NUMERICAL EXAMPLES

bump-and-revalue method (which, to repeat, is written in an optimised way that would be
difficult to implement in a real-world application).

48

7 Conclusion

We have compared three different methodologies, bump-and-revalue, proxy scheme and
pathwise differentiation (in forward and in adjoint modes) for obtaining Greeks (partial
derivatives of option prices with respect to input parameters) via Monte Carlo simulation.
It is clear, conceptually, that using pathwise differentiation in adjoint mode is the best
methodology. It is potentially much more efficient than pathwise differentiation in forward
mode. In turn, pathwise differentiation in forward mode is, conceptually, much more ef-
ficient than bump-and-revalue. Our conclusions are in accordance with the conclusions of
Glasserman (2004) [11] and Giles and Glasserman (2006) [10]. We have used Automatic
Differentiation software to implement the forward and adjoint modes. This is an extremely
attractive method of implementation since it completely automates the task of computing
the necessary derivatives and gives the user very significant flexibility when using a large
number of different models and payoffs. On the other hand, it is clear that there is a consid-
erable computational overhead from using the FADBAD Automatic Differentiation code.
It runs something of the order of 20 times slower than code hand-written in C++. This is
a major disadvantage. However, it does not take away the fact that Automatic Differentia-
tion is a very elegant solution because it is so generic. For future research, we suggest that
the use of alternative Automatic Differentiation software should be investigated. There are
many alternatives available that can be downloaded from the internet, such as ADOL-C,
Sacado or ADMB which are all implemented in C++.
These should be investigated. Doubtless each different type of Automatic Differentiation
software will have its advantages and disadvantages. But, given the computational overhead
of FADBAD, finding the most appropriate Automatic Differentiation software for financial
applications is crucial.

49

References

[1] C. Bendtsen and O. Stauning. FADBAD, a flexible C++ package for Automatic Differ-
entiation. Department of Mathematical Modelling, Technical University of Denmark,
1996.

[2] A. Brace, D. Gatarek, and M. Musiela. The Market Model of Interest Rate Dynamics.
Mathematical Finance, 7(2):127–155, 1997.

[3] M. Broadie and P. Glasserman. Estimating security price derivatives using simulation.
Management Science, 42(2):269–285, 1996.

[4] L. Capriotti. Fast Greeks by Algorithmic Differentiation. 2010.

[5] L. Capriotti and M. Giles. Fast Correlation Greeks by Adjoint Algorithmic Differen-
tiation. 2010.

[6] C.P. Fries. Localized Proxy Simulation Schemes for generic and robust Monte Carlo
Greeks. 2007.

[7] C.P. Fries and M.S. Joshi. Partial Proxy Simulation Schemes for generic and robust
Monte Carlo Greeks. 2006.

[8] C.P. Fries and J. Kampen. Proxy Simulation Schemes for generic robust Monte Carlo
sensitivities, process oriented importance sampling and high accuracy drift approxi-
mation (with applications to the LIBOR market model). 2006.

[9] M. Giles. Monte Carlo evaluation of sensitivities in computational finance. In HER-
CMA 2007 Conference Proceedings, 2007.

[10] M. Giles and P. Glasserman. Smoking Adjoints: fast evaluation of Greeks in Monte
Carlo calculations. Risk, pages 88–92, January 2006.

[11] P. Glasserman. Monte Carlo methods in financial engineering. Springer, 2004.

[12] P. Glasserman and X. Zhao. Fast Greeks by simulation in forward LIBOR models.
Journal of Computational Finance, 3(1):5–39, 1999.

[13] C.J. Hunter, P. Jackel, and M.S. Joshi. Drift approximations in a forward-rate-based
LIBOR market model. Getting the Drift, pages 81–84, 2001.

[14] M. Leclerc, Q. Liang, and I. Schneider. Fast Monte Carlo Bermudan Greeks. Risk,
pages 84–88, July 2009.

[15] M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-dimensionally equidis-
tributed uniform pseudorandom number generator. 1998.

[16] D. Nualart. The Malliavin calculus and related topics. Springer, 1995.

[17] R. Rebonato. Modern pricing of interest-rate derivatives: the LIBOR market model
and Beyond. Princeton Univ Pr, 2002.

[18] O. Stauning. Flexible Automatic differentiation using templates and operator over-
loading in C++. http://www.fadbad.com.

51

