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Abstract 

In this paper, we use a Gaussian HJM-type (Heath et al 1992) model for the valuation 

of inflation-linked derivatives. The model is essentially that of Jarrow and Yildirim 

(2003), which in turn is essentially analogous to a cross-currency model (modelling 

the spot foreign exchange rate, domestic currency interest-rates and foreign currency 

interest-rates). In the cross-currency FX analogy of Jarrow and Yildirim (2003), 

nominal zero coupon bonds are analogous to zero coupon bonds in the domestic 

currency, real zero coupon bonds are analogous to zero coupon bonds in the foreign 

currency and the spot consumer price index (CPI) is analogous to the spot foreign 

exchange rate.  

We extend the Jarrow and Yildirim (2003) model by modelling interest-rate yield 

curves with a multi-factor (rather than one factor) Gaussian HJM (Heath et al 1992) 

model. Our paper is organized as follows: 

Firstly, we introduce the model and our notation. 

Then, we explain the valuation of standard zero coupon inflation swaps. We then 

examine popular and actively-traded inflation products such as zero coupon inflation 

swaps with delayed payment, period-on-period inflation swaps with both no delayed 

payments and with delayed payments, using the Gaussian model (we explain what we 

mean by delayed payments in section 2.4). Moreover, we give the analytical prices of 

these inflation-linked derivatives, consistent with no-arbitrage. Specifically, we focus 

on the “convexity adjustments” involved in pricing these products. We provide an 

application of our convexity adjustment formulae to the valuation of limited price 

indexation (LPI) swaps. 

Finally, to specify the model, we use the same method as in Jarrow and Yildirim 

(2003) to estimate the model parameters which are needed to evaluate the convexity 

adjustments. 
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1 Introduction 
1.1 Background to inflation-linked derivatives 
In recent years, the market for inflation-linked derivatives has grown very rapidly. 

They are used by market participants to manage the risks of changing inflation 

and changing inflation expectations in an efficient way. It is fair to say that inflation is 

now regarded as an independent asset class. 

There are, broadly speaking, two types of participants in the inflation derivatives 

markets: those who wish to receive and those who wish to pay inflation-linked cash 

flows.  

Actively-traded inflation derivatives include standard zero coupon inflation 

swaps, and more complicated products such as period-on-period inflation swaps 

(Mercurio (2005)), inflation caps, inflation swaptions, and futures contracts written on 

inflation (Crosby 2007b). 

Inflation is described in terms of an inflation index. In practice, there are a 

number of actively referenced inflation indices. The main indices are the HICPxT 

index (which measures inflation in the Euro zone and is published by Euro stat), the 

RPI (Retail Price index) (which measures inflation in the UK and is published by 

National Statistics), and the US-CPI (consumer price index) (which measures 

inflation in the US and is published by BLS).  

Throughout this paper, we will, for the sake of brevity, refer to the inflation index 

as the CPI index or the spot CPI index (even though in the UK, it would be probably 

the RPI and in the Eurozone, it would probably be the HICPxT index). All of these 

indices are a measure of retail or consumer price inflation. They are calculated by 

collecting and comparing the prices of a set basket of goods and services, as bought 

by a typical consumer, at regular intervals over time. (Reuters) 
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1.2 Outline of the thesis 
The remainder of this paper is structured as follows: 

In chapter two, the foreign exchange analogy is explained briefly. Then, we will 

provide notation and discuss the simplest type of inflation derivative, namely standard 

(i.e. with no delayed payment) zero coupon inflation swaps, and show how they can 

be valued in a model-independent fashion. Moreover, we will explain in detail what is 

meant by indexation lag and delayed payments. 

In chapter three, working within a multi-factor version of the Jarrow and Yildirim 

(2003) model, we will introduce the dynamics of nominal zero coupon bond prices, 

real zero coupon bond prices and the spot CPI index. 

In chapter four, we compute the convexity adjustments required to value 

period-on-period inflation swaps with no delayed payments, zero coupon inflation 

swaps with delayed payment and period-on-period inflation swaps with delayed 

payments in detail. To our best knowledge, some of these results, at least in the 

context of a multi-factor Jarrow and Yildirim (2003) model, have not appeared in the 

literature before. 

In chapter five, we provide an application of the convexity adjustments we 

computed in chapter four, to the valuation of limited price indexation (LPI) swaps, in 

which we use the quasi-analytic methodology of Ryten (2007). 

In chapter six, we use the methods of Jarrow and Yildirim (2003) to estimate the 

model parameters from historical data. We will also illustrate our model with some 

examples and comparisons. 

In chapter seven, we will give the conclusions of this paper. 

In the appendices, we give detailed derivations of some of the formulae that we 

use. 

 



Convexity Adjustments in Inflation-linked Derivatives using a multi-factor version of the Jarrow and Yildirim (2003) Model 

 8

2 Foreign Exchange Analogy and Modeling 
Inflation 
We are concerned, in this paper, with Gaussian models for inflation which are 

arbitrage-free and consistent with any initial term structure of interest-rates (both 

nominal and real). 

In this and all subsequent sections, we will always make the assumptions that the 

market is frictionless, complete and arbitrage-free. These assumptions guarantee 

(Harrison and Pliska (1981)) the existence of a unique equivalent martingale measure 

which is denoted by Q . We use the notation [  ]tE  to denote expectations at time t , 

with respect to this equivalent martingale measure. 

All stochastic processes are defined on a common filtered probability space 

( , ,F QΩ ), where the filtration F  is assumed to be the natural filtration generated by 

the Brownian motions, which we shall shortly introduce, driving the nominal and real 

interest-rate yield curves and the spot CPI index. 

We denote calendar time by t . We define today (the initial time) to be time 0t .   

2.1 Introduction to foreign exchange methodology  

2.11 Notation 

The foreign exchange (FX) analogy relates to the valuation of foreign exchange 

options written on a spot foreign exchange rate. 

We denote the price, in domestic currency, of a (credit risk free) zero coupon 

bond denominated in domestic currency, at time t , maturing at time T  by ( ),P t T , 

and the corresponding domestic short rate by ( )r t . We denote the price, in foreign 

currency, of a (credit risk free) zero coupon bond denominated in foreign currency, at 

time t , maturing at time T  by ( ),fP t T , and the corresponding foreign short rate 
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by ( )fr t . Let ( )X t  denote the spot foreign exchange (FX) rate, at time t , quoted as 

the number of units of domestic currency per unit of foreign currency.  

2.12 A basic valuation formula in the foreign exchange analogy 

The basic derivatives valuation formula is (Harrison and Pliska (1981)): The 

price,
0t

H , of  a derivative, at time 0t , is:
0 0

0

exp ( )
T

t t T
t

H E r s ds H
⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ , where TH  

is the random payout at time T . 

    There is a key observation for modelling cross-currency derivatives which is:   

( ) ( ) ( ) ( )exp ,
MT

t M f M
t

E r s ds X T X t P t T
⎡ ⎤⎛ ⎞

− =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫            (2.11) 

which we will refer to later in section 2.22.    

Remark: The above equation is true and model-independent. To see that it is true, observe 
that, ( ),f MP t T is the price of a zero coupon bond in foreign currency, at time t  maturing at 
time MT , and ( )X t  is the price, in domestic currency, of one unit of foreign currency paid 
at time t .Therefore the RHS of the equation represents the price, at time t , in domestic 
currency, of one unit of foreign currency paid at time MT . In terms of the LHS, 
since ( )MX T denotes the price, in domestic currency, of one unit of foreign currency paid at 
time MT , then the conditional expectation of it, discounted to time t , represents the price, at 
time t , in domestic currency, of one unit of foreign money paid at time MT . Hence, the 
equation must be true. 

2.2 Modeling Inflation 
The key to modeling inflation and to pricing inflation-linked derivatives is to notice 

that there is a total and complete analogy between inflation-linked derivatives and 

cross-currency derivatives.  

The analogy is that nominal interest rates are the equivalent of domestic interest 

rates, real interest rates are the equivalent of foreign interest rates and the spot CPI 

inflation index is the equivalent of the spot foreign exchange rate. The FX analogy 

gives an intuitive way to think about inflation. See the figure below 
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Table 1    The analogy 

FX rate            ( )X t CPI index        ( )X t  

Domestic interest rate ( )r t  Nominal interest rate ( )r t  

Foreign  interest rate ( )fr t  Real  interest rate ( )rr t  

2.21 Notation  

Let us explain some notation. We will use a subscript r  to indicate real interest rates 

and real zero coupon bond prices. 

Let ( )r t  and ( )rr t  denote the (continuously compounded) risk-free nominal 

and real short rates, at time t , respectively. Let ( ),P t T  and ( ),rP t T  denote the 

price of a (credit risk free) nominal and real zero coupon bond, at time t , maturing at 

time T , respectively. Throughout this paper, we will often use the words “zero 

coupon bond” and “discount factor” almost interchangeably, with the proviso that 

discount factors are known today, time 0t . 

Let ( )X t  denote the spot CPI index, at time t , i.e. it is the value, in units of 

nominal currency, of a typical basket of goods and services. 

2.22 An Important Observation for inflation derivatives 

The key observation for pricing inflation derivatives is that, for any times t  and MT , 

with Mt T≤ , we have:      

( ) ( ) ( ) ( )exp ,
MT

t M r M
t

E r s ds X T X t P t T
⎡ ⎤⎛ ⎞

− =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫            (2.21) 

Remark: The above equation is model independent. It is the analogous equation to (2.11) for 
modeling inflation derivatives. To see that it is true, note that ( ),r MP t T  is the price of a real 
zero coupon bond, at time t , maturing at time MT , and ( )X t  is the price, in nominal 
currency, at time t , of one unit of real currency paid at time t . Therefore the RHS of the 
equation represents the price, at time t , in nominal currency, of one unit of real currency 
paid at time MT . In terms of the LHS, since ( )MX T  denotes the price, in nominal currency, 
of one unit of real currency paid at time MT , then the conditional expectation of it discounted 
to time t , represents the price, at time t , in nominal currency, of one unit of real currency 
paid at time MT . Hence, intuitively, equation (2.21) holds. 
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Remark: In Appendix 2, we give a more mathematical proof of equation (2.21). We can use 
this key observation to help price several different types of inflation-linked derivatives, 
including zero coupon inflation swaps and period-on-period inflation swaps, which we will 
explain in detail later. 

2.3 Zero Coupon Inflation Swaps     

Suppose that today, time 0t , we enter into a MT  year standard zero coupon inflation 

swap. As with a standard interest-rate swap, there is no up-front cost to entering into a 

zero coupon inflation swap. So the value of the swap today, time 0t , must be zero. 

The exchange of cash flows between the two parties only occurs at the maturity MT  

of the swap. 

We wish to value the swap, at time t , where 0 Mt t T≤ ≤ . By definition, the 

payoff of the zero coupon inflation swap at time MT  is: 

               
( )
( ) ( )( )

0

1 1 1MTMX T
N N K

X t
⎛ ⎞

− − + −⎜ ⎟⎜ ⎟
⎝ ⎠

                  (2.31) 

where K  is the fixed rate on the swap and N  is the notional amount. We can call 

the first term ( ) ( )( )0 1MN X T X t −  in the expression (2.31) the floating 

(inflation-linked) side and the second term ( )( )1 1MTN K+ −  the fixed side. 

In the absence of arbitrage, the value of the swap, at time t , is: 

           

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0

0

0

0

   exp 1 1 1

exp 1

exp , 1

, , 1

M
M

M
M

M
M

M

T
TM

t
t

T
TM

t
t

T
T

t M M
t

T
r M M

X T
E r s ds N N K

X t

X T
E N r s ds K

X t

N E r s ds X T NP t T K
X t

N X t P t T NP t T K
X t

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥− − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞

= − − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= − − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= − +

∫

∫

∫

                         

where in the last line, we have used the key observation, equation (2.21). 
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So the value of the swap, at time t , is: 

             
( ) ( ) ( ) ( )( )

0

, , 1 MT
r M M

N X t P t T NP t T K
X t

− +              (2.32) 

which gives us a valuation formula for the value of the swap at any time. 

In particular, we know that the value of the swap today, time 0t , must be zero. 

So setting 0t t=  in equation (2.32) and equating the value to zero implies: 

( ) ( ) ( ) ( )( )0 0 0
0

0 , , 1 MT
r M M

N X t P t T NP t T K
X t

= − + . 

Therefore,          ( ) ( )( )0 0, , 1 MT
r M MP t T P t T K= +                 (2.33) 

Remark: Zero coupon inflation swaps are actively traded in the market and one can get 
prices in the brokers. They are quoted by the fixed rate K  for various maturities MT . Hence, 
we can use the last equation to obtain the real interest-rate yield-curve i.e. obtain a set of real 
interest-rate discount factors (given a set of nominal interest-rate discount factors which, of 
course, we can get in the usual way from the standard interest-rate swaps market), which we 
can then use to price more exotic structures such as period-on-period swaps. 

Remark: Comparing the methodology of Jarrow and Yildirim (2003), in which they use a 
stripping method to get nominal and real zero coupon bond prices from the observed market 
prices of coupon bearing bonds, it is much easier and quicker to get real discount factors from 
equation (2.33). Note that, in practice, MT  is usually a whole number of years. This means we 
obtain a set of real interest-rate discount factors to times which are a whole number of years from 
today. When interpolating between these times, to estimate real discount factors to times which are 
fractional numbers of years, one needs to be aware of the impact of seasonality. We will not 
discuss seasonality further here but we refer the reader to Belgrade and Benhamou (2004) and 
Kerkhof (2005). 

Remark: Equations (2.32) and (2.33) are model independent and are not based on specific 
assumptions concerning the evolution of interest rate yield curves or the spot CPI index, but, 
indeed, simply follow from the absence of arbitrage. 

2.4 Indexation lag and delayed payments 
The main purpose of inflation-linked derivatives is to protect the real (i.e. after 

allowing for inflation) value of future cash flows. In order to achieve a high degree of 

certainty in the real value of future cash flows, the inflation-linked cash flows should 

be as closely linked as possible to contemporaneous inflation. However, this is not 

completely possible owing to the existence of indexation lag. This is best explained as 

follows: 
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In practice, there is a delay of a few weeks between the date on which the CPI 

index is measured and the date on which the value of the CPI index is announced in 

the market. This time interval is the time required to collect and process the consumer 

prices required by statisticians to compute the CPI index. For example, in the United 

Kingdom, the value of the CPI index (actually, one of the most closely watched 

indices is called the RPI but we shall continue to call it the CPI for brevity) for a 

given month is published on about the 15th of the following month. So for example, 

the CPI index for May 2007 was published on about the 15th June 2007. Furthermore, 

the market for sterling denominated zero coupon inflation swaps adopts the 

convention that throughout a calendar month, the “base” index (the value of the index 

appearing in the denominator of the payoff) is the index for two months before. So, 

for example, throughout July 2007, all 25 year zero coupon inflation swaps would 

have a future inflation-linked payoff (in July 2032) equal to: 

The value of the CPI index for May 2032 (which will be announced in June 2032) 

divided by the value of the CPI index for May 2007 (whose value was known on 

approximately 15th June 2007) minus one. 

This means that an investor who receives the inflation-linked payment on a 25 

year zero coupon swap is not compensated for inflation over the period May to July 

2032 although the investor will receive compensation for inflation over the period 

May to July 2007 (before the swap commenced). 

When we write ( )X t  as the value of the spot CPI index, what we really mean 

is that ( )X t ε−  is the actual published value of the CPI index at a time ε  earlier. 

The value of ε  can actually vary slightly (between about one month and two 

months). Since the value of ε  only changes slightly compared to the typically 

maturity of inflation swaps (which is often greater than 20 years), it is the market 

convention to assume that it is effectively constant. This is the convention we will 

adopt. There is very little to be lost by doing so since the same convention applies at 

the maturity of the inflation swap as applied at the start of the inflation swap and so 
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any misspecification, at least partially, cancels out. One convenient benefit of 

adopting this convention is that we can continue to use equation (2.33) to obtain real 

interest-rate discount factors and to do so in a model-independent fashion. 

There is one further issue with inflation swaps which is the issue of delayed 

payments. This is sometimes called payment lag although to avoid confusion with the 

concept of indexation lag, we will refer to it as delayed payments. 

For standard zero coupon inflation swaps, the payment time MT  of the payoff 

coincides with the argument of the value of X  in the numerator of the 

inflation-linked term in the payoff. So, the payment of the cash flow in equation 

(2.31), namely, ( ) ( )( ) ( )( )0 1 1 1MT
MN X T X t N K− − + − , occurs at time MT . Although, 

this is indeed the most common situation, often, in practice, the payment is delayed 

until some later time NT . This delay is not just the standard 2 day spot settlement lag 

but can be a period of a few weeks, a few months or even several years. We will refer 

to such inflation swaps as inflation swaps with delayed payments. 

To see how such inflation swaps have an important economic rationale, consider 

a commercial property company. Suppose it has debt in the form of fixed-rate loans. It 

receives rents from its tenants which it wants to pay out as the inflation-linked leg of 

an inflation swap. It will receive fixed payments on the inflation swap which it will 

use to pay its fixed-rate debt. Often rents will remain constant for a period of 5 years 

before being reviewed. They will then be revised upwards to reflect inflation over 

those intervening five years. So for example, suppose, the commercial property 

company wanted to enter into an inflation swap trade, in which it paid inflation-linked 

cash flows and it received fixed cash flows. The company wants to hedge the cash 

flows that it will receive from its tenants in years 6, 7, 8, 9 and 10. So a suitable 

inflation swap trade would be a strip of five zero coupon inflation swaps as follows. 

The payoff of the five zero coupon swaps would be (we write only the inflation-linked 

leg with unit notional): 
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At the end of year 6, the company pays ( ) ( )( )5 0 1X X − . At the end of year 7, it 

again pays ( ) ( )( )5 0 1X X − . At the end of year 8, it again pays ( ) ( )( )5 0 1X X − . At 

the end of year 9, it again pays ( ) ( )( )5 0 1X X − . At the end of year 10, it again pays 

( ) ( )( )5 0 1X X − .  

We can see that these are zero coupon inflation swaps with delayed payment 

with the delay on the final swap of the strip being 5 years.  

Period-on-period swaps with delayed payments also trade in the markets.  

If nominal interest-rates were deterministic, then valuing these inflation swaps 

with delayed payments would be trivial given a pricing methodology for valuing the 

corresponding type of inflation swap with no delayed payments. However, since we 

will have stochastic interest-rates, valuation is more difficult and will involve the 

evaluation of additional terms which we will loosely refer to as convexity 

adjustments. 
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3 Framework of the model 
In this section, we set up the dynamics of nominal zero coupon bond prices, real zero 

coupon bond prices and the spot CPI index. We work within a multi-factor version of 

the Jarrow and Yildirim (2003) model. It is clear that the Jarrow and Yildirim (2003) 

model is a model which is, firstly, arbitrage-free and, secondly, consistent with any 

initial term structure of nominal and real interest rates, since it is a HJM (Heath et al 

(1992)) model. 

3.1 Stochastic evolution of nominal bond prices 
We assume that, under the equivalent martingale measure defined with respect to the 

nominal money market account numeraire, nominal zero coupon bond prices are 

stochastic and follow a Gaussian HJM model (Heath et al. 1992): 

               ( )
( ) ( ) ( ) ( )

1

,
,

,

nK

kn kn
k

dP t T
r t dt t T dz t

P t T
σ

=

= +∑ .             (3.11) 

where nK  is the number of Brownian motions, ( )kndz t , for each k , 1,..., nk K= , 

denotes standard Brownian increments. Furthermore, the correlation between ( )jndz t  

and ( )kndz t  is jnknρ , for each k  and each j , 1,..., nj K= , and ( ),kn t Tσ , for 

each k , are volatility terms which are purely deterministic functions of t  and T , 

satisfying ( ), 0kn T Tσ ≡ .  

3.2 Stochastic evolution of real bond prices 
We now describe the risk-neutral dynamics of real zero coupon bond prices. We 

assume that, under the equivalent martingale measure defined with respect to the 

nominal money market account numeraire, real zero coupon bond prices follow a 

Gaussian HJM model (Heath et al.(1992)): 

    ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1

,
, ,

,

r rK K
r

r krX X kr kr kr
k kr

dP t T
r t t t T dt t T dz t

P t T
ρ σ σ σ

= =

⎛ ⎞
= − +⎜ ⎟
⎝ ⎠

∑ ∑     (3.21) 
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where rK  is the number of Brownian motions, ( )krdz t , for each k , 1,..., rk K= , 

denotes standard Brownian increments and where, for each k , 1,..., rk K= , krXρ  is 

the correlation between the spot CPI and the respective Brownian motion driving real 

zero coupon bond prices. We denote the correlation between ( )jrdz t  and ( )krdz t  

by jrkrρ , for each k  and each j , 1,..., rj K= .  

Remark:  Note the “quanto drift adjustment” in equation (3.21). 

3.3 Stochastic evolution of the spot CPI index 
The dynamics of the spot CPI, under the equivalent martingale measure defined with 

respect to the nominal money market account numeraire, are given by: 

               ( ) ( )( ) ( ) ( )t
r X X

t

dX r t r t dt t dz t
X

σ= − +               (3.31) 

where ( )Xdz t  denotes standard Brownian increments, the drift is the difference 

between the nominal and real short rates, and ( )X tσ  is the volatility which we 

assume to be a purely deterministic function of t . Furthermore, we introduce the 

notation that the correlation between  Xdz  and kndz , for each  k , 1,..., nk K= , is 

knXρ  and the correlation between kndz  and  jrdz , for each  k , 1,..., nk K= , and  

for each  j , 1,..., rj K=  is knjrρ . 

Remark: It is convenient to assume all the correlations are constant (which we do in the 
implementation) although all the equations in this paper would hold if they are, at most, 
deterministic functions of t . We assume the correlations form a symmetric positive-definite 
matrix with elements unity down the leading diagonal.  

If we define the forward CPI at time t  to (i.e. for the delivery at) time T  

by ( ),XF t T , then by no-arbitrage arguments (see Appendix 2), we know that,  

( ) ( )
( )

,
,

,
t r

X

X P t T
F t T

P t T
=                      .    (3.32) 

Further, by Ito’s lemma,  
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( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1

1 1

,
, , ,

,

, ,

, ,                (3.33)

n n n

nr

nr

K K K
X

knjn jn kn knX X kn
k j kX

KK

jnkr jn kr
k j

KK

X X kr kr kn kn
k k

dF t T
t T t T t t T

F t T

t T t T dt

t dz t t T dz t t T dz t

ρ σ σ ρ σ σ

ρ σ σ

σ σ σ

= = =

= =

= =

⎧
= −⎨
⎩

⎫
− ⎬

⎭

+ + −

∑∑ ∑

∑∑

∑ ∑

Then the forward CPI index, ( ),XF t T , at time t , can be expressed in terms of its 

value ( )0 ,XF t T , at time 0t , as follows: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0

0

0

1 1

1 1 1 1

2

1

, ,

exp , ,

1 1exp , , , ,
2 2

1                ,
2

nr

n n r r

r

X X

t KK

X X kr kr kn kn
k kt

t K K K K

jnkn jn kn krjr jr kr
k j k jt

K

X krX X kr
k

F t T F t T

s dz s s T dz s s T dz s

s T s T s T s T

s s s T

σ σ σ

ρ σ σ ρ σ σ

σ ρ σ σ

= =

= = = =

=

=

⎛ ⎞⎛ ⎞
× + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎛
× −⎜ ⎜⎜ ⎝⎝

⎞
− −

⎠

∑ ∑∫

∑∑ ∑∑∫

∑                         (3.34)ds
⎞
⎟⎟ ⎟
⎠

Remark: Notice that the drift and volatility terms in the stochastic differential equation for 

( ),XF t T  are deterministic and that ( ),XF t T  is log-normally distributed. 
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4 Exotic inflation derivatives 
In chapter two, we have shown that, given the rates on standard (i.e. with no delayed 

payment) zero coupon inflation swaps quoted in the market (and given nominal 

discount factors), we can get real discount factors.  

We were able to obtain real discount factors by valuing zero coupon inflation 

swaps in a model-independent fashion. This is analogous to obtaining nominal 

discount factors from LIBOR deposit rates and by “bootstrapping” swap rates, which 

can also be done in a model-independent fashion. Just as nominal discount factors are 

the building blocks upon which we could value more exotic interest-rate derivatives, 

so real discount factors are the building blocks upon which we can value more exotic 

inflation derivatives. This is the aim of this section. 

We will see that the prices of these more exotic inflation derivatives are 

model-dependent and therefore we will aim to value them in the Jarrow and Yildirim 

(2003) model we introduced in the last section. In this section, we will value three 

types of inflation swap, namely, period-on-period inflation swaps with no delayed 

payments, zero coupon inflation swaps with delayed payment and period-on-period 

inflation swaps with delayed payments. 

The key point about the last two types of inflation swap is that they have the 

same payoff as the corresponding inflation swap with no delayed payments but the 

payoff is paid at a later time. When the delay in payment is very small (for example, a 

few weeks), we would, intuitively, expect the difference between the values of the 

corresponding swaps with no delayed payments and with delayed payments to be 

small. Conversely, we shall see that the difference in values can be substantial when 

the delay in payments is, for example, a few years. As we noted in section 2.4, 

inflation swaps with delayed payments of five years or more are quite commonly 

traded in the markets. 

We now turn our attention to pricing period-on-period inflation swaps with no 

delayed payments.  
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4.1 Period-On-Period Inflation Swaps  

Suppose that today, time 0t , we enter into a period-on-period inflation swap. The 

swap is defined via a set of fixed dates 0 1 2 1... M MT T T T T−< < < < < , where 0 0T t≡ . 

These dates are usually approximately equally spaced (for example, approximately 

one year apart) but they need not be.  

As with a standard interest-rate swap, a period-on-period inflation swap is made 

up of a series of swaplets. There are payments of ( ) ( )( ),inf 1 1i i iN X T X Tτ − −  against 

a fixed rate ,i fixedN Kτ  at each time iT .  

    Therefore, the payoff of the thi swaplet, for 1, 2,...,i M= , at time iT  is: 

               
( )
( ),inf ,

1

1i
i i fixed

i

X T
N N K

X T
τ τ

−

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠
                   (4.11) 

where K  is the fixed rate on the swap, N  is the notional amount, ,infiτ  is the 

day-count adjusted time from 1iT −  to iT  for the floating (inflation-linked) leg and 

,i fixedτ  is the day-count adjusted time from 1iT −  to iT  for the fixed leg. 

In the absence of arbitrage, the value of the swaplet, at time t , is : 

( ) ( )
( )

( ) ( )
( ) ( ) ( )

,inf ,
1

,inf ,inf ,
1

    exp 1

exp ,          (4.12)

i

i

T
i

t i i fixed
it

T
i

i t i i i fixed
it

X T
E r s ds N N K

X T

X T
N E r s ds P t T N K

X T

τ τ

τ τ τ

−

−

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
⎢ ⎥− − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= − − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫

∫

To value the floating (inflation-linked) side, we have to consider separately two 

different cases depending upon whether 1it T −≥  or 1it T −< . 

First case:    1i iT t T− ≤ ≤ . 

In this case, ( )1iX T −  is known at time t . Therefore we can take ( )1iX T −  
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outside of the expectation and then use the key observation, namely equation (2.21), 

and write ( ) ( )
( )

( ) ( )
( )1 1

,
exp

iT
i r i

t
i it

X T P t T X t
E r s ds

X T X T− −

⎡ ⎤⎛ ⎞
− =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ . Hence, equation (4.12) 

becomes:        ( ) ( )
( ) ( ) ( ),inf ,inf ,

1

,
,r i

i i i i fixed
i

P t T X t
N P t T N K

X T
τ τ τ

−

− +          (4.13) 

Second case:    0 1it t T −≤ < . 

Using the law of iterated expectations in equation (4.12), we can write the value 

of the swaplet, at time t , as  

( ) ( ) ( )
( ) ( ) ( )

1

1

1

,inf ,inf ,
1

exp exp ,
i i

i

i

T T
i

i t T i i i fixed
it T

X T
N E r s ds E r s ds P t T N K

X T
τ τ τ

−

−

− −

⎡ ⎤⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎢ ⎥− − − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

∫ ∫     

But now the key observation of equation (2.21), tells us that  

   

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )

1 1

1 11 1

1 1
1

1

1exp exp

1 ,

,

i i

i i

i i

T T
i

T T i
i iT T

r i i i
i

r i i

X T
E r s ds E r s ds X T

X T X T

P T T X T
X T

P T T

− −

− −− −

− −
−

−

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥− = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

=

=

∫ ∫

                   

Therefore, the value of the swaplet, at time t , is :  

( ) ( ) ( ) ( )
1

,inf 1 ,inf ,exp , ,                  (4.14)
iT

i t r i i i i i fixed
t

N E r s ds P T T P t T N Kτ τ τ
−

−

⎡ ⎤⎛ ⎞
− − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫

We can show (using the methodology of Appendix 4) that: 

( ) ( ) ( ) ( )
( ) ( )

1 1

1 1 1
1

,
exp , , exp , ,   (4.15)

,

i iT T
r i

t r i i i i i
r it t

P t T
E r s ds P T T P t T A s T T ds

P t T

− −

− − −
−

⎡ ⎤⎛ ⎞ ⎛ ⎞
− =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

( ) ( ) ( ){ }

1 1

1

1

1 1 1
1 1

1 1
1 1

1
1

where      , , , , ,

, , ,

, ,               (4.16)

i in r

ir r

ir

T TK K

i i knjr kn i jr i jr i
k jt t

TK K

krjr kr i jr i jr i
k j t

TK

krX X kr i kr i
k t

A s T T ds s T s T s T ds

s T s T s T ds

s s T s T ds

ρ σ σ σ

ρ σ σ σ

ρ σ σ σ

− −

−

−

− − −
= =

− −
= =

−
=

= −

+ −

+ −

∑∑∫ ∫

∑∑ ∫

∑ ∫
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Remark: We call the expression (4.16) the convexity adjustment for a period-on-period 
inflation swap. Notice when ( ), 0kr is Tσ ≡ , for all k , the convexity adjustment will be 
identically equal to zero. But, in this special case, real interest rates would be deterministic. 

From equation (4.14) and (4.15), when 0 1it t T −≤ < , the equation (4.12) becomes: 

( ) ( )
( ) ( ) ( ) ( )

1

,inf 1 1 ,inf ,
1

,
, exp , , ,       (4.17)

,

iT
r i

i i i i i i i fixed
r i t

P t T
N P t T A s T T ds P t T N K

P t T
τ τ τ

−

− −
−

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
∫   

 

We can value a period-on-period inflation swap by summing up the value of all 

the swaplets, being careful to use equation (4.13) when 1i iT t T− ≤ ≤ , and equation 

(4.17) when 0 1it t T −≤ < . 

We know that the value of the swap today, time 0t , must be zero. So we can set 

0t t=  in the last formula and equate the value of the swap to zero, to relate the fixed 

rate K  to the term structure of real interest-rate discount factors and to the 

parameters of the stochastic processes for the interest-rate yield curves and the spot 

CPI index. 

Period-on-period inflation swaps are not as actively traded in the market as zero 

coupon inflation swaps although it is sometimes possible to get some prices. They are 

quoted by the fixed rate K  for various maturities MT . As explained earlier, we can 

use zero coupon inflation swaps to get real interest-rate discount factors. In principle, 

we could then use period-on-period inflation swaps (assuming we have enough of 

them) to calibrate the parameters (volatilities, mean reversion rates, CPI volatility, 

correlations) of the stochastic processes for the real interest-rate yield curve and the 

spot CPI index. 

4.2 Zero coupon inflation swaps with delayed payment 
In section 2.3, we valued standard zero coupon inflation swaps when the payment of 

the payoff of the swap occurred at the same time as the argument of the spot CPI 
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index appearing in the numerator of the payoff. As we noted and explained in section 

2.4, it is now relatively common to trade zero coupon inflation swaps where the 

payment is delayed for some time, perhaps several years or more. We refer to these 

inflation swaps as zero coupon inflation swaps with delayed payment. Our aim, in this 

section, is to derive a valuation formula for them. Unlike with a standard (i.e. with no 

delayed payment) zero coupon inflation swap, the valuation of zero coupon inflation 

swaps with delayed payment involves a convexity adjustment which is 

model-dependent. 

Firstly, we derive a formula which, in a sense, extends the key observation of 

equation (2.21) to the situation of delayed payment, although we should stress that it 

is less general than equation (2.21), in the sense that it is no longer 

model-independent. 

Proposition 1:   

For any times t  and NT , with 0 M Nt t T T≤ ≤ ≤ , the following equation holds: 

( ) ( ) ( ) ( )
( )

,
exp ( ) , exp ( , , )       (4.21)

,

N MT T
N

t M r M M N
Mt t

P t T
E r s ds X T X t P t T C s T T ds

P t T

⎡ ⎤⎛ ⎞ ⎛ ⎞
− =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫

( ){ }

( ){ }

( ) ( ){ }

1 1

1 1

1

where  ( , , ) , ( , ) ( , )

( , ) , ( , )

, ( , )                 (4.22)

M Mn r

Mn n

Mn

T TK K

M N knjr kn N kn M jr M
k jt t

TK K

knjn kn M kn N jn M
k j t

TK

knX X kn N kn M
k t

C s T T ds s T s T s T ds

s T s T s T ds

s s T s T ds

ρ σ σ σ

ρ σ σ σ

ρ σ σ σ

= =

= =

=

= −

+ −

+ −

∑∑∫ ∫

∑∑ ∫

∑ ∫

Proof: See Appendix 3.                                                                 

Remark: When M NT T= , it is straightforward to verify that ( , , ) 0M NC s T T ≡ , in which 
case, equation (4.21) agrees with equation (2.21). 

Remark: This formula will be used below to price zero coupon inflation swaps with delayed 
payment. 

Suppose that today, time 0t , we enter into a zero coupon inflation swap with 

delayed payment. We denote the payment time of the payoff of the swap by NT  and 



Convexity Adjustments in Inflation-linked Derivatives using a multi-factor version of the Jarrow and Yildirim (2003) Model 

 24

we denote the maturity of the swap by MT . We wish to value the swap, at time t , 

where 0 M Nt t T T≤ ≤ ≤ . The payoff of the zero coupon inflation swap with delayed 

payment is still:         
( )
( ) ( )( )

0

1 1 1MTMX T
N N K

X t
⎛ ⎞

− − + −⎜ ⎟⎜ ⎟
⎝ ⎠

  

where K  is the fixed rate on the swap and N  is the notional amount. 

But the payoff is paid at time NT  which is some time greater than or equal to 

MT . The value, at time t , of the zero coupon inflation swap with delayed payment is :    

       

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( )

0

0

0

0

   exp 1 1 1

exp 1

exp , 1

,
, exp ( ,

,

N
M

N
M

N
M

T
TM

t
t

T
TM

t
t

T
T

t M N
t

N
r M

M

X T
E r s ds N N K

X t

X T
E N r s ds K

X t

N E r s ds X T NP t T K
X t

P t TN X t P t T C s T
X t P t T

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞
− − − + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞
= − − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= − − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

∫

∫

∫

( )( ), ) , 1
M

M

T
T

M N N
t

T ds NP t T K
⎛ ⎞

− +⎜ ⎟⎜ ⎟
⎝ ⎠
∫

 

Remark: Notice that in the last line we have used proposition 1. 

So the value of the swap, at time t , is: 

( ) ( ) ( ) ( )
( ) ( )( )

0

,
, exp ( , , ) , 1

,

M
M

T
TN

r M M N N
M t

P t TN X t P t T C s T T ds NP t T K
X t P t T

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
∫     (4.23) 

which gives us a valuation formula for the value of a zero coupon inflation swap with 

delayed payment at any time. 

Remark: Comparing equation (4.23) with the equation for the value of a standard zero 
coupon inflation swap with no delayed payment (equation (2.32)), we can see that there is an 

extra term ( )
( )

,
exp ( , , )

,

MT
N

M N
M t

P t T
C s T T ds

P t T
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∫  in the inflation-linked leg. 
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4.3 Period-on-period inflation swaps with delayed payments 
Our aim in this section is to value, at any time t , a period-on-period inflation swap 

with delayed payments. 

The following proposition will be the key to this because it shows that when 

there are delayed payments, the valuation of period-on-period inflation swaps 

involves additional convexity adjustment terms. Equation (4.31) of proposition 2 

extends equations (4.15) and (4.16) which we used in the valuation of 

period-on-period inflations swaps with no delayed payments. 

Proposition 2:   

When 0 1 ii i Nt t T T T−≤ < < ≤   

( ) ( )
( )

( )
( )
( )

( )
( )

1

1

1 1
1

    exp                                                                                    (4.31)

, ,
, exp ( , , ) { ( , ,

, ,

Ni

i
i

i

i

T
i

t
it

T
N r i

i i N i
i r i T

X T
E r s ds

X T

P t T P t T
P t T C s T T ds A s T T

P t T P t T
−

−

− −
−

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟−

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= +

∫

∫
1

1) ( , , , )}
i

i

T

i i i N
t

B s T T T ds
−

−

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∫

 

where ( , , )
ii NC s T T is given by (4.22), 1( , , )i iA s T T−  is given by (4.16) and  

{ }

{ }

{ }

1 1

1

1

1 1
1 1

1
1 1

1
1 1

( , , , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

i in n

i i

in n

in r

i

T TK K

i i N knjn kn i kn i jn N
k jt t

TK K

knjn kn i kn i jn i
k j t

TK K

knjr jr i jr i kn N
k j t

knjr

B s T T T ds s T s T s T ds

s T s T s T ds

s T s T s T ds

ρ σ σ σ

ρ σ σ σ

ρ σ σ σ

ρ

− −

−

−

− −
= =

−
= =

−
= =

= −

+ −

+ −

+

∑∑∫ ∫

∑∑ ∫

∑∑ ∫

{ }
1

1
1 1

( , ) ( , ) ( , )                (4.32)
in r

TK K

jr i jr i kn i
k j t

s T s T s T dsσ σ σ
−

−
= =

−∑∑ ∫

  

Proof: See Appendix 4.                                                                 

Remark: Notice that when
ii NT T= , it is straightforward to confirm 1( , , , )

ii i NB s T T T− and 

( , , )
ii NC s T T  in equation (4.31) becomes zero, which confirms consistency with equation 

(4.15). 
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Suppose that today, time 0t , we enter into a period-on-period inflation swap 

with delayed payments. The swap is defined via a set of fixed dates 

0 1 2 1... M MT T T T T−< < < < < , where 0 0T t≡ .  

The period-on-period inflation swap is made up of a series of swaplets. The key 

issue is that the value of the payoff of each swaplet is the same as the payoff of the 

corresponding swaplet of a period-on-period inflation swap with no delayed payments 

but now the payoff is paid at time 
iNT  which is some time greater than or equal to iT . 

From equation (4.11), the payoff of the thi swaplet, for 1, 2,...,i M= , at time 

iNT  is:                   
( )
( ),inf ,

1

1i
i i fixed

i

X T
N N K

X T
τ τ

−

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠
 

where the notation is the same as in equation (4.11).  

The value, at time t , of the swaplet with delayed payment, i.e. 
iN iT T≥  , is:  

     ( ) ( )
( ),inf ,

1

exp 1
NiT

i
t i i fixed

it

X T
E r s ds N N K

X T
τ τ

−

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟− − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

∫  

   ( ) ( )
( ) ( ) ( ),inf ,inf ,

1

exp ,
Ni

i

T
i

i t N i i fixed
it

X T
N E r s ds P t T N K

X T
τ τ τ

−

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − +

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫   (4.33)  

To value the floating (inflation-linked) side, we have to consider separately two 

different cases depending upon whether 1it T −≥  or 1it T −< . 

First case:    1i iT t T− ≤ ≤ .  

In this case, ( )1iX T −  is known at time t . Therefore we can take ( )1iX T −  

outside of the expectation and write  
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( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )
( )

1 1

1

1exp exp

,1 ( ) , exp ( , , )
,

N Ni i

i
i

i

T T
i

t t i
i it t

T
N

r i i N
i i t

X T
E r s ds E r s ds X T

X T X T

P t T
X t P t T C s T T ds

X T P t T

− −

−

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− = −

⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

∫ ∫

∫

  

where we have used proposition 1 in the last line.  

Hence, equation (4.33) becomes: 

( )
( )

( )
( ) ( ) ( ),inf ,inf ,

1

,( ) ,
exp ( , , ) ,  (4.34)

,

i
i

i i

T
Nr i

i i N N i i fixed
i i t

P t TX t P t T
N C s T T ds P t T N K

X T P t T
τ τ τ

−

⎛ ⎞
− +⎜ ⎟⎜ ⎟

⎝ ⎠
∫  

Second case:    0 1it t T −≤ < . 

Using the law of iterated expectations in equation (4.33) and by proposition 2, 

we can write the value of the swaplet, at time t , as :  

( ) ( )
( )

( )
( ) ( )

1

1

,inf 1 1 1
1

,,
, exp ( , , ) { , , ( , , , )}

, ,

i i
i

i i

i

T T
Nr i

i i i N i i i i N
r i i T t

P t TP t T
N P t T C s T T ds A s T T B s T T T ds

P t T P t T
τ

−

−

− − −
−

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫                

( ) ( ),inf ,,
iN i i fixedP t T N Kτ τ− +                  (4.35) 

 

Therefore, we can value a period-on-period inflation swap with delayed 

payments by summing up the value of all the swaplets, being careful to use equation 

(4.34) when 1i iT t T− ≤ ≤ , and equation (4.35) when 0 1it t T −≤ < . 
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5 An application of our convexity 
adjustment formulae to pricing LPI swaps 
Limited price indexation (henceforth LPI) swaps are a type of exotic inflation 

derivative and are very common in the United Kingdom owing to the rules by which 

UK pension funds are governed. The rules often require that the future benefits of 

people paying into many pension funds have to rise by the year-on-year inflation rate 

whenever the year-on-year inflation rate, expressed as a percentage, is between some 

given levels %f  and %c , where c f≥ . If the year-on-year inflation rate is less than 

%f , the future benefits have to increase by at least %f  and if the year-on-year 

inflation rate is greater than %c , the future benefits are increased by only %c . In 

practice, f  is often 0 % and c  is often either 3 % or 5 % but variations do occur.   

These rules effectively define the future liabilities of UK pension funds. 

Unsurprisingly, there has been substantial demand for inflation derivatives, from UK 

pension funds, which will give payoffs which can hedge against those liabilities. This 

has provided the economic rationale for LPI swaps. 

We will see that we can use the convexity adjustment formulae, that we derived 

in chapter 4, to help price LPI swaps.  

5.1 LPI swaps   

Suppose that today, time 0t , we enter into an LPI swap. The LPI swap is defined 

via a set of fixed dates 0 1 2 1M MT T T T T−< < < < <" , where 0 0T t≡ . In practice, these 

dates are usually approximately one year apart but they need not be. The payment of 

the payoff of the swap occurs at time *T , where *
MT T= . The payoff of the 

inflation-linked leg of the swap at time *T  is: 

1 1

( )1 min max 1, ,
( )

M
i

i i

X T F C
X T= −

⎛ ⎞⎛ ⎞⎛ ⎞
+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∏  or equivalently 
1 1

( )min max ,1 ,1
( )

M
i

i i

X T F C
X T= −

⎛ ⎞⎛ ⎞
+ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏  
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where C  and F  are constants, with C F≥ . In practice, F  is often zero but we 

will assume in the following that  C  and F  can take on any values (positive, 

negative or zero) provided C F≥ . The period-on-period rate of inflation between 

1iT −  and iT  is given by 1( ) ( ) 1i iX T X T− − . So the role of the constants C  and F  is to 

cap and floor the period-on-period inflation rate over each period. 

Remark: When 1M = , LPI swaps could be priced by a variant of the Black (1976) 
formula. When C = ∞  and F = −∞ , the product telescopes and the LPI swap has the same 
payoff as a zero coupon inflation swap. However, when C  and F  are finite and 1M > , 
we would need to price a swap whose payoff is path-dependent. Because of the 
path-dependency, they are not, in general, trivial to price. When 2M =  or 3M =  they 
could be priced by numerical integration techniques (i.e. quadrature for the case 2M =  and 
cubature for the case 3M = ). However, in practice, LPI swaps typically have maturities 
anywhere between 5 years and 40 years implying that M  is between 5 and 40. When 

4M ≥ , the only feasible methodology to precisely price LPI swaps is Monte Carlo 
simulation but this is CPU intensive. Hence, it would be desirable to have a fast, even if 
approximate, quasi-analytic methodology to price them. Such a methodology is proposed in 
Ryten (2007).  

5.2 Pricing LPI swaps   

In this section, we will use the methodology of Ryten (2007) to get an approximate 

pricing formula for the inflation-linked leg of LPI swaps. However, firstly, we 

introduce some notation: We denote by 
*TQ  the probability measure defined with 

respect to the numeraire which is the zero coupon bond maturing at time *T . We 

denote by [ ]*T
tE  expectations, at time t , with respect to 

*TQ .  

    The methodology of Ryten (2007) is fully explained in Ryten (2007) so we will 

just outline the approach here. It uses the idea of common factor representation. 

Suppose that we have a MT  year LPI swap with M  periods.  

Let iX  denote 
1

( )
( )

i

i

X T
X T −

, for 1, 2, ,i M= … . We will show in Appendix 5 that: 

 
1

( )ln ln
( )

i
i

i

X TX
X T −

≡ , for each i , 1, 2, ,i M= … , is distributed as multi-variate 

normal in our model. 
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 We can calculate the covariance matrix ( )cov ln ,lni jX X          (5.21) 

for each i , j , 1, 2, ,i M= … , 1, 2, ,j M= … .  

    In general, none of the elements of this covariance matrix will be zero because 

ln iX  will not be independent of ln jX  for any i  and j . This lack of 

independence severely complicates the problem of pricing an LPI swap. The key idea 

of Ryten (2007) (see also Jackel (2004)) is to replace the covariance matrix (5.21) for 

each i , j  by another matrix, which is close to the actual correlation matrix in some 

sense, but in which the off-diagonal elements have a simple structure.  

    We use the same notation as in Ryten (2007). We write iX  in the form 

: exp( )i i i iX a z b= + where (0,1)iz N∼ ; cov(ln , ln ) cov( , )i j i j i jX X z z a a= ⋅ ⋅ ; 

[ ] 21exp( )
2i i iE X b a= + .  

    The key idea of Ryten (2007) is to replace iX  by : exp( ( ))i i ii i iX b a a w d ε
∧ ∧ ∧

= + + , 

with the following additional properties: The system w , 1, , Mε ε…  is a system of 

independent (0,1)N  variates, and for each i , 
2 2

1i ia d
∧ ∧

+ = . Ryten (2007) shows how 

to calculate ia
∧

 and id
∧

, for each i . The variates 1, , MX X
∧ ∧

… are a representation of 

the variates 1, , MX X…  via one common factor w  and additional individual 

idiosyncratic random variables iε , 1, 2, ,i M= … . 

    By changing measure to 
*TQ  and using Girsanov’s Theorem, the price, at time 

0t , of the inflation-linked leg of the LPI swap is: 

     

*

0

0

*

0

1 1

*
0

1 1

( )    exp ( ) min max ,1 ,1
( )

( )( , ) min max ,1 ,1
( )

T M
i

t
i it

M
T i
t

i i

X TE r s ds F C
X T

X TP t T E F C
X T

= −

= −

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
⎢ ⎥− + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞
= + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∏∫

∏
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*

0

* *

0 0

* *

0 0

*
0

1

*
0

1

*
0

1

( , ) min max ,1 ,1

( , ) min max ,1 ,1

( , ) min max ,1 ,1       

M
T

it
i

M
T T

it t
i

M
T T

it t
i

P t T E X F C

P t T E E X F C w

P t T E E X F C w

∧

=

∧

=

∧

=

⎡ ⎤⎛ ⎞⎛ ⎞+ +⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞= + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞= + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∏

∏

∏

�

                      (5.22)

 

Remark: By assumption, the iε  are independent, and consequently, conditional on a 

specific value of w , the variates iX
∧

 are independent, i.e. cov( | , | ) 0i jX w X w
∧ ∧

= , when 

i j≠ . Therefore, we see that the conditional expectation of the product in the last but one line 
of equation (5.22) becomes a product of conditional expectations in the last line. We have 

used � (approximately equals) in the third line of equation (5.22) because the variates iX
∧

 

are, in general, only an approximate representation of the variates iX , 1, 2, ,i M= … . 

When 2M ≤ , the representation is exact. When 3M ≥ , the representation is only 

approximate. It is true that 
* *

0 0
[ ] [ ]T T

it t iE X E X
∧

= ,
0 0

var [ln ] var [ln ]it t iX X
∧

=  for all i , for 

any value of M  but when 3M ≥ , then cov( , )i jX X
∧ ∧

 is only an approximation to 

cov( , )i jX X , when i j≠ . 

    We can use the methodology of Ryten (2007) to evaluate equation (5.22) 

provided that we can compute the expectation and variance of iX  in the probability 

measure 
*TQ . We do this in Appendix 5. Since iX  is lognormal (see Appendix 5), 

then denoting by ln iXμ and 2
ln iXσ  the mean and variance of ln iX , then 

[ ]*

0

2
ln ln

1exp( )
2i i

T
t i X XE X μ σ= +  for 1, 2, ,i M= … . Hence, we can get the expectation of 

ln iX , i.e. [ ]( )*

0

2
ln ln

1ln
2i i

T
X t i XE Xμ σ= − . 

Now we can use the following result:  

If 2( , )X XX N μ σ∼ , (0,1)W N∼  and XWρ  is the  correlation  between X  and  

W , then X W w=  is normally distributed and, furthermore, 
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        X XW XE X W w wμ ρ σ⎡ ⎤= = +⎣ ⎦ , 2 2(1 )X XWVar X W w σ ρ⎡ ⎤= = −⎣ ⎦  

    In Appendix 5, we show that the correlation between ln iX
∧

 and w  is ia
∧

, for 

each i , 1, 2, ,i M= … .  

    Now, we recall that 
* *

0 0 ln[ln ] [ln ]
i

T T
it t i XE X E X μ

∧

= = ,
0 0

2
lnvar [ln ] var [ln ]

i
it t i XX X σ

∧

= = , 

then, using the result above, we get  

       
*

0 ln ln[ln | ]
i i

T
i it X XE X w a wμ σ

∧ ∧

= + , 
0

2 2 2
ln: [ln | ] (1 )

i
ii t X ivar X w aσ σ

∧∧

= = −   

      *

0

2

ln ln
1: [ | ] exp
2i i

T
i i i it X XF E X w a wμ σ σ

∧ ∧⎛ ⎞= = + +⎜ ⎟
⎝ ⎠

,         1, 2, ,i M= … . 

    Finally (see Ryten (2007)), equation (5.22) becomes: 

      ( )*

0

*
0

1

( , ) ( ,1 , ) ( ,1 , )
M

T
i i ii it

i

P t T E F Call F C Put F Fσ σ
=

⎡ ⎤
− + + +⎢ ⎥

⎣ ⎦
∏         (5.23) 

where ( ,1 , )i iCall F C σ+  and ( ,1 , )i iPut F F σ+  are the undiscounted prices of a 

call option, with strike 1 C+ , and a put option, with strike 1 F+ , in the Black (1976) 

formula, when the forward price is iF  and the integrated variance is 
2
iσ . 

Remark: Note that each term in the product in equation (5.23) depends on the common 

factor w , through iF  and iσ , and w  has a standard normal (0,1)N  distribution.   

    We can then evaluate equation (5.23) by numerically integrating the product of 

( )
1

( ,1 , ) ( ,1 , )
M

i i ii i
i

F Call F C Put F Fσ σ
=

− + + +∏  and the standard normally density 

function. This gives us the price of the LPI swap at time 0t  (note that when 3M ≥ , 

it is only an approximation).       
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6 Calibration to market data 
We will now calibrate our model to market data in this section. 

6.1 Get historical data 

6.11 Get zero coupon inflation swaps and CPI 

We obtained the fixed rates being quoted in the market for sterling (GBP) 

denominated zero coupon inflation swap rates, for every working day between 9th 

July 2003 and 14th June 2007, with maturities, equal to 5 years, 10 years, 15 years, 20 

years, 25 years and 30 years. Using equation (2.33), this allowed us to get data for real 

zero coupon prices, for every working day, for these six maturities. 

We also obtained historical data on the CPI index (recall that, throughout this 

paper, we call the index the CPI for brevity but, in actual fact, we used the UK RPI 

index). Because the CPI data is only available monthly, we decided to use only 

monthly data (even though we had daily data) for nominal and real zero coupon bond 

prices. We decided to use data for the 28th (or the closest working day) of each 

month. 

Remark: Since CPI is announced in the middle of a month (i.e. 10th-20th), the data is 
somewhat noisy so we decided not to use data from this period. The choice is fairly arbitrary 
but we decided to use data from the 28th of each month (or the closest working day).  

6.12 Get nominal and real discount factors 

We obtained nominal discount factors, in sterling (GBP), for every working day 

between 1st July 2003 and 22nd June 2007, with maturities, again, equal to 5 years, 

10 years, 15 years, 20 years, 25 years and 30 years. These were obtained, in the 

standard fashion, from GBP LIBOR deposit rates and by bootstrapping GBP swap 

rates. 

Jarrow and Yildirim (2003) consider the valuation of inflation-linked instruments 

in the context of the market for Treasury Inflation Protected Securities (henceforth 

TIPS). TIPS are US Treasury bonds whose coupon and principal payments are linked 

to US CPI. Since these are coupon bearing bonds, Jarrow and Yildirim (2003) had to 



Convexity Adjustments in Inflation-linked Derivatives using a multi-factor version of the Jarrow and Yildirim (2003) Model 

 34

use a stripping methodology to extract the prices of real zero coupon bonds from the 

prices of coupon bearing bonds. They then used historical data of these real zero 

coupon bond prices to estimate the parameters of their model. By contrast, we are 

working within the context of inflation swaps. We know from equation (2.33) that 

there is a simple relationship between the fixed rate quoted on standard zero inflation 

swaps and real zero coupon bond prices. Hence, we do not need to employ the 

stripping algorithm of Jarrow and Yildirim (2003) in order to get real zero coupon 

bond prices. We simply used equation (2.33). 

Before we describe how we estimated the model parameters, we need to be more 

precise about the specific form of the model that we used. In chapters 3, 4, and 5, we 

worked with a very general multi-factor version of the Jarrow and Yildirim (2003) 

model. However, we need to bear in mind that there is not too much historical data for 

inflation swaps and what data there is, may be somewhat noisy. Hence, in order to 

make for a simpler estimation of parameters, throughout this chapter, we assumed that 

real zero coupon bond prices are driven by just a single Brownian motion i.e. we 

assumed 1rK =  in equation (3.21) to simplify parameter estimation. In addition, we 

assume that the volatility ( )X tσ  of the spot CPI index is constant, i.e. we assume 

that ( )X Xtσ σ≡ . We considered two possible specifications for nominal zero coupon 

bond prices, namely that there is either one Brownian motion driving nominal zero 

coupon bond prices or that there are two i.e. either 1nK =  or 2nK = . 

6.2 Get model parameters using Jarrow and Yildirim (2003) 

method 
In order to price the exotic inflation derivatives we discussed in chapters 4 and 5, 

we need model parameters which are dependent on the specific model. Therefore, 

firstly, we need to specify the volatility functions ( ),kn t Tσ  and ( ),jr t Tσ . 

Potentially, there are different forms of the volatility functions, ( ),kn t Tσ , 
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( ),jr t Tσ  for each ,k j , 1,..., nk K= , 1,..., rj K= , but we will consider only the 

extended Vasicek form, where for each ,k j  we assume 

( ) ( )( )( )

( ) ( )( )( )

, 1 exp                                     (6.21)

, 1 exp                                     (6.22)

nk
kn kn

nk

rj
jr jr

rj

t T T t

t T T t

σσ α
α
σ

σ α
α

≡ − − −

≡ − − −
 

where, for each k , each j , nkσ , nkα , rjσ and rjα  are positive constants. 

6.21 One factor model 

In this sub-section, we estimate model parameters for the case where we have one 

Brownian motion driving nominal zero coupon bond prices i.e. when 1nK = . In 

addition as already stated, we assume 1rK = . Using the method of Jarrow and 

Yildirim (2003), the variance of zero coupon bond prices over the time interval 

[ ],t t ++  satisfies the following equations: 

             

1

1

( )2 2
1

2
1

( )2 2
1

2
1

( , ) (1 )var                                           (6.23)
( , )

( , ) (1 )var                                           (6.24)
( , )

r

n

T t
r r

r r

T t
n n

n n

P t T e
P t T

P t T e
P t T

α

α

σ
α

σ
α

− −

− −

⎛ ⎞ −
=⎜ ⎟

⎝ ⎠
⎛ ⎞ −

=⎜ ⎟
⎝ ⎠

+ +

+ +
 

Using Excel Solver, we ran a cross sectional non linear regression based on the 

equations (6.23) and (6.24) acoss the six different maturities to estimate the 

parameters 1 1( , )n nσ α  and 1 1( , )r rσ α . To be precise, in our calibration, we solved for 

the parameters which minimized the sums of squares of differences between the 

historical volatilities of zero coupon bond prices of the six different maturities and the 

model volatilities in equations (6.21) and (6.22). The historical volatilities were 

estimated using monthly data i.e. 1/12=+ . 

The estimates of these parameters are 1 1 10.006094, 0.032193, 0.007242r r nσ α σ= = = , 
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1 0.043585nα =  as given in table 3. These parameters provide the volatility inputs 

needed for the convexity adjustments (see expression (4.16), (4.22), (4.32))  

In this sub-section, we only use a one factor model when estimating model 

parameters, which means we only need krXρ , jnXρ , krjnρ  when 1k =  and 1j = . 

From the method of Jarrow and Yildirim (2003), these parameters have the following 

expression: 

1
2

1
1

1

1 1 1
1 1 1

1 1 1

( , )1 ( ) ( )var                       ,
( ) ( , ) ( )

( , ) ( , ) ( , )( ),            ,
( , ) ( ) ( , ) ( , )

r
X rX

r

n n r
nX n r

n n r

P t TX t X tcor
X t P t T X t

P t T P t T P t TX tcor cor
P t T X t P t T P t T

σ ρ

ρ ρ

⎧ ⎫ ⎛ ⎞⎛ ⎞
= =⎨ ⎬ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

++ +
+

+ + ++
    (6.25) 

Remark: We use the historical data of CPI, nominal zero coupon bond prices and real zero 
coupon bond prices, as of the 28th of each month, to estimate these parameters. The 
parameters obtained are in tables 2 and 3. 

6.22 Two factor model 

For the case where we have two Brownian motions driving nominal zero coupon 

prices i.e. when 2nK = , we obtained the parameters 1nσ , 1nα , 2nσ , 2nα , 1 2n nρ  by 

calibrating a two-factor Gaussian HJM model (Heath et al (1992), Babbs (1990), Hull 

and White (1993)) model to the market prices of liquid European swaptions. The 

results of the calibration were that we obtained model parameters as follows:                 

1 1 2 20.006498, 0.064945, 0.006332, 0.000016n n n nσ α σ α= = = =             

together with the correlation between these two factors 1 2 0.462963n nρ = −  as given 

in tables 4 and 5. These parameters were provided by John Crosby and Lloyds TSB.  

We assumed that 1 1 1, ,r r rXσ α ρ  were as above (see also table 3). We also need to 

estimate 1 2 1 1, ,nX nX n rρ ρ ρ  and 2 1n rρ . We used the approach described on page 425 of 

Brigo and Mercurio (2001). In essence, we set 1 2nX nXρ ρ≡  and we set 1 1 2 1n r n rρ ρ≡ . 

We assume that 1nXρ  and 2nXρ  are equal to the corresponding values we obtained 
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for the one factor case above (see table 2). That is, we assume 

1 2 0.018398nX nXρ ρ≡ = . We would like to do likewise with 1 1n rρ  and 2 1n rρ . 

However, if we set 1 1 2 1 0.7504n r n rρ ρ≡ = , we find that the correlation matrix is not 

positive definite. Therefore, we decided to set 1 1 2 1 0.5181n r n rρ ρ≡ =  because 0.5181 

is the closest value which makes the correlation matrix positive definite. 

Whilst we concede that this is unlikely to yield anything like perfect estimates of 

these parameters, there is (as Brigo and Mercurio (2001) explain) at least a measure of 

mathematical consistency about it and, in addition, given the relatively scarce amount 

of data for inflation, it is a pragmatic simplification.  

6.3 Give the values of convexity adjustments of exotic 

derivatives 
We have now obtained estimates of the model parameters needed for the 

convexity adjustments (see equations (4.16), (4.22), (4.32)). We will, later in this 

section, use these parameters to test the analytical formulae we derived in sections 4.1, 

4.2 and 4.3, and then give some numerical examples and comparisons of the 

convexity adjustments, for the three types of inflation swaps we considered in chapter 

4, for different swap tenors and payment times.  

John Crosby (my industry supervisor) also provided data which gives the values 

of the convexity adjustment (together with standard errors of these estimates) using a 

Monte Carlo methodology which was used to test and benchmark the analytical 

formulae (equations (4.16), (4.22), (4.32)). The Monte Carlo simulation simulated the 

CPI index level and the nominal and real yield curves by simulating underlying 

Gaussian state variables and it therefore had no discretisation error bias. For the sake 

of brevity, we omit the full details since they can be found in, for example, Crosby 

(2005), Crosby (2007a), Dempster and Hutton (1997) and Glasserman (2004). The 

Monte Carlo values we report were computed using 130 million runs (65 million runs 

plus 65 million antithetic runs) which took several hours of CPU time. 



Convexity Adjustments in Inflation-linked Derivatives using a multi-factor version of the Jarrow and Yildirim (2003) Model 

 38

Here, thanks again John Crosby for his kindly help. 

In examples 1 to 4, we use the model parameters for the case when there is one 

Brownian motion driving nominal interest-rates i.e. when 1nK = . We plot the 

convexity adjustments, graphically, in the different examples below. 

Example 1: Comparison of the Monte Carlo results and the analytical formulae 

In this example (figures 1, 2, and 3), we consider the convexity adjustments for 

zero coupon inflation swaps with delayed payment, period-on-period swaplets with no 

delayed payment and period-on-period swaplets with a 5 year payment delay. 

 

Figure 1 

 

Figure 2 



Convexity Adjustments in Inflation-linked Derivatives using a multi-factor version of the Jarrow and Yildirim (2003) Model 

 39
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Figure 3 

From figure 1, 2 and 3, we can see that the difference between the results from 

the Monte Carlo and the analytical results of chapter 4 are very small - in fact, they 

are almost zero and, whilst we have not displayed the standard errors in the graphs, 

we can confirm that the analytical results are consistent with the standard errors of the 

Monte Carlo simulation. We can conclude that the formulae we derived in chapter 4 

are correct and that they have been correctly implemented. 

Example 2: Convexity adjustments for zero coupon inflation swaps 

In this example (figure 4), we compare the convexity adjustments for zero coupon 

inflation swaps, with maturities MT  equal to 25, 20, 15, 10 and 5 years, when there is 

no delayed payment, when there is a one year payment delay and when there is a five 

year payment delay. 

From figure 4, we can see that, firstly, when there is no delayed payment time, 

the convexity adjustment always equals one, which is what we expect. However, 

when the payment delay is increased, from zero to one year to 5 years delay, the 

convexity adjustments get further away from one. In addition, as the maturity 

increases from 5 years to 25 years, the convexity adjustments also get further away 

from one. This illustrates that the convexity adjustments become more significant for 

longer maturities and longer payment delays. 
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Figure 4 

Example 3: Convexity adjustments for period-on-period swaplets 

 In this example (figure 5), we perform a similar analysis to example 2, but this 

time for period-on-period swaplets.   

Comparision 
Convexity Adjustment for Period-on-Period Swaplet 

with no delay,  1 Year delay and  5Years delayed payment 
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Figure 5 

In figure 5, we again see that longer maturities and longer payment delays 

produce convexity adjustments which are further away from one. 

Example 4:  The effect of the convexity adjustment on the fixed rate for zero 

coupon inflation swaps. 

    Figure 6 shows the fixed rate K  on zero coupon inflation swaps, with a 



Convexity Adjustments in Inflation-linked Derivatives using a multi-factor version of the Jarrow and Yildirim (2003) Model 

 41

payment delay of 5 years, for swaps of different tenors from 25 years to 5 years. The 

fixed rate on the swaps when we evaluate the convexity adjustment, using equation 

(4.22) and the parameters for the one factor case (see tables 2 and 3), is always lower 

than the fixed rate we would obtain on the swaps if we naively assumed that no 

convexity adjustment was necessary. Furthermore, the difference increases with 

increasing swap tenor. At 25 years, the difference is more than 0.035% which is, from 

a trader’s perspective, significant as the bid-offer spread in the market, for zero 

coupon inflation swaps, is approximately 0.03%, or sometimes even less. 

     

Figure 6 

Example 5:  

In example 5, we use the model parameters (see tables 4 and 5), for the case when 

there are two Brownian motions driving nominal interest-rates i.e. 2nK = . We 

compare the estimates of the convexity adjustments, obtained by Monte Carlo 

simulation (we also report the standard errors in the column marked s/e) and those 

obtained using the analytical formulae, for period-on-period swaplets when there is no 

delayed payment, when there is a one year payment delay and when there is a five 

year payment delay.   

The table shows again that the formulae we derived in chapter 4 are correct and 
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that they have been correctly implemented. 

 

Table 6    

    Now, in examples 6 and 7, we will give some examples of the prices of LPI 

swaps. We use the one factor model parameters (see tables 2 and 3). For the purposes 

of these illustrations, we assumed that the interest-rate (both nominal and real) yield 

curves were initially flat and that nominal interest rates to all maturities were 0.05 and 

real interest rates to all maturities were 0.025 i.e. we assumed ( )0, exp( 0.05 )P t T T≡ −  

and ( )0 , exp( 0.025 )rP t T T≡ −  for all T . 

Example 6: 
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Figure 7 
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In figures 7, we consider three different combinations of floors and caps (which 

are commonly traded in the market) namely, (0%, 3%), (0%, 5%) and (1%, 4%). For 

all three different combinations, we considered LPI swaps where each period was 

equal to one year, but the number of periods varied from one period, through 5, 10, 15, 

25 to 30 periods and hence the maturities of the LPI swaps varied from one year to 30 

years. We can see that the fixed rates obtained from the quasi-analytical methodology 

of Ryten (2007) (see chapter 5) are very close to the results obtained from Monte 

Carlo simulation for shorter maturities although the differences do increase for LPI 

swaps with longer maturities.  

Example 7: 

In this example, we considered eleven different combinations of floors and caps 

as indicated in table 7. We considered LPI swaps whose maturities were one year, six 

years, 10 years and 25 years. For all the swaps, except those with six year maturities, 

each period was a year and hence the number of periods equaled the number of years 

to maturity. By contrast, the LPI swaps with six year maturities had only two periods 

as each period was equal to 3 years. 
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Table 7 

We can see that there is (to the probabilistic errors implied by the standard errors) 

perfect agreement between the prices of the LPI swaps obtained by Monte Carlo 

simulation and those obtained by the quasi-analytical methodology of Ryten (2007) 

(see chapter 5), for the LPI swaps with one year maturity (one period) and those with 

six years maturity (two periods of three years each). This is not surprising since we 

know that the quasi-analytical methodology is exact for the cases when 2≤M . 

However, we see for the LPI swaps with 10 years maturity and 25 years maturity, the 

level of approximation involved in the quasi-analytical methodology. As a rough 

guide, the bid-offer spread in the market for LPI swaps is approximately 0.06% 

(expressed as the fixed rate on the swap). For the LPI swaps with 10 years maturity, 

the maximum (absolute) difference in the fixed rate, implied by the Monte Carlo 

results and the quasi-analytical methodology, is less than 0.026% which implies, if 

not perfect, certainly very accurate pricing as it is less than half the bid-offer spread. 

For the LPI swaps with 25 years maturity, the accuracy does deteriorate somewhat 

and is, in some cases, greater than the bid-offer spread in the market.  
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We also see that the accuracy of the quasi-analytical methodology, when 3≥M , 

also deteriorates when the cap level is high and the floor level is low. This might 

initially seem surprising since in the limiting case that C = ∞  and F = −∞ , LPI 

swaps become the same as standard zero coupon swaps. However, the reason for the 

deterioration in accuracy is that the quasi-analytical methodology approximates the 

correlation structure.  

Although, (using the notation of section 5.2), it is true that 
* *

0 0
[ ] [ ]T T

it t iE X E X
∧

= , 

for all i , and it is true that 
* *

0 0

*
0 0

1 0

( ) ( , ) ( , )
( )

M
T T M
t i t r M r

i

X TE X E P t T P t T
X t=

⎡ ⎤⎡ ⎤
= = =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
∏ , the 

price of a standard zero coupon swap, the approximation of the correlation structure 

means that 
*

0
1

M
T

it
i

E X
∧

=

⎡ ⎤
⎢ ⎥
⎣ ⎦
∏  does NOT equal 

*

0
1

M
T
t i

i

E X
=

⎡ ⎤
⎢ ⎥
⎣ ⎦
∏ , when 3≥M . 

For the sake of brevity, we only considered the Ryten (2007) methodology for the 

case of conditioning on one common factor. Ryten (2007) also considers the case of 

conditioning on two common factors (which means evaluating the price of a LPI swap 

requires a double numerical integration). Ryten (2007) shows that (unsuprisingly) 

conditioning on two common factors gives a significant improvement in the accuracy 

of the methodology compared to using one common factor. We would certainly 

conjecture that using two common factors would also significantly improve the 

accuracy of the prices of the LPI swaps, with 10 years maturity and 25 years maturity, 

which we reported in table 7. However, we leave proof of this for future research. 
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7 Conclusions 
The most actively traded inflation derivatives are standard (i.e. with no delayed 

payment) zero coupon inflation swaps. We have shown how these can be valued in a 

model-independent fashion and how they can be used to extract the term structure of 

real discount factors.  

Recently, there has been a substantial increase in the demand for more exotic 

inflation derivative products. We have used a multi-factor version of the Jarrow and 

Yildirim (2003) model, which in turn is a Gaussian HJM (Heath et al. (1992)) model, 

to value some exotic inflation derivatives. The Jarrow and Yildirim (2003) model is 

based on the foreign exchange analogy which treats real zero coupon bond prices 

analogously to foreign (ie denominated in foreign currency) zero coupon bond prices 

while the CPI index which links the nominal and real economies plays the analogous 

role as the spot foreign exchange rate which links the domestic and foreign currencies.  

Using the multi-factor Jarrow and Yildirim (2003) model, we have valued zero 

coupon inflation swaps with delayed payment, period-on-period inflation swaps with 

no delayed payments and period-on-period inflation swaps with delayed payments.  

We have particularly focused on the convexity adjustments which arise in the 

valuation of these latter products, including those convexity adjustments which arise 

from the delay in the payment of the payoff of the swap in question.  

Just as with using a Gaussian HJM (Heath et al. (1992)) model to price some 

exotic interest-rate derivatives, we can conclude that a major advantage of using the 

Jarrow and Yildirim (2003) model is that it is possible to price some exotic inflation 

derivatives with exact analytical formulae rather than with ad-hoc methodologies or 

time-consuming numerical methods. 
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Appendix 1 
We will make frequent use of the following equations 
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Proof of equation (1): We can apply Ito’s lemma to equation (3.11) to get an SDE 

for ( )ln , NP t T  and then rewrite this equation in integral form from t  to NT , to 

express ( ),N NP T T  in terms of ( ), NP t T  and ( )r s . But then we note that 

( ), 1N NP T T = . Rearranging, we get equation (1). As an aside, it is straightforward to 

confirm that: 

           ( )exp ( , )
NT

t N
t

E r s ds P t T
⎡ ⎤⎛ ⎞

− =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫                          (4) 

Proof of equation (2): We can, as in the proof of equation (1), solve the SDE of 

equation (3.11) to get, firstly, an equation for ( )1,i NP T T−  in terms of ( ), NP t T  and, 

secondly, an equation for ( )1,i iP T T−  in terms of ( ), iP t T . If we divide the first 
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equation by the second, the terms involving the nominal short rate cancel and we 

obtain equation (2). 

Proof of equation (3): We now solve the SDE of equation (3.21) to get, firstly, an 

equation for ( )1,r i iP T T−  in terms of ( ),r iP t T , and secondly, an equation for 

( )1 1,r i iP T T− −  in terms of ( )1,r iP t T − . If we divide the first equation by the second, and 

note that ( )1 1, 1r i iP T T− − = , then the terms involving the real short rate cancel and we 

obtain equation (3). 

 

Appendix 2 
Consider a forward contract with maturity MT . The payoff of this forward contract is 

( )MX T K− , at time MT . It costs nothing to enter into a forward contract and hence 

we choose K  such that the forward contract has zero initial value, and the forward 

price is defined to be this value of K . 

The price of the forward contract at time t  is: 
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We choose K  such that equation (1) equal zero. Solving the above equation, 

we get ( ) ( ) ( )exp ,
MT

t M M
t

K E r s ds X T P t T
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= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ .Hence, by definition, the forward 

price is:           

( ) ( ) ( )( , ) exp ,
MT

X M t M M
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F t T E r s ds X T P t T
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= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫              (2) 

However, we can also show that in the absence of arbitrage 

( ) ( ) ( ), ( ) , ,X M r M MF t T X t P t T P t T= . 
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To see this, consider two portfolio’s A and B. 

In portfolio A, we buy one forward contract, at time t . The payoff of the 

forward contract, at time MT , is ( )MX T K− . K  is chosen so that the value of the 

forward contract, at time t , is zero. 

In portfolio B, at time t , we sell short K  nominal bonds, for which we receive 

( ), MKP t T  units of nominal currency, which by exchanging for real currency, gives 

us ( ), ( )MKP t T X t  units of real currency, which we then use to buy 

( ) ( ), ( ) ,M r MKP t T X t P t T  notional amount of real bonds. The cost of portfolio B, at 

time t , is zero.  

At time MT , from the maturing real bonds, we receive ( ) ( ), ( ) ,M r MKP t T X t P t T  

units of real currency which we sell at rate ( )MX T , to give us 

( ) ( )( ), ( ) , ( )M r M MKP t T X t P t T X T×  units of nominal currency. We must also pay K  

units of nominal currency to repay the maturing nominal bonds. Therefore, the value 

of portfolio B at time MT  is ( ) ( )( ), ( ) , ( )M r M MKP t T X t P t T X T K× − . 

We are free to choose K , however we wish. If we choose K  to be 

( ) ( )( ) , ,r M MK X t P t T P t T= , then we can write the value of portfolio B, at time MT , 

in the form ( )MX T K− . 

But with this choice of K , portfolio B has the same value, at time MT , as 

portfolio A and hence, in the absence of arbitrage, portfolio A must have the same 

value as portfolio B, at time t , but we know the latter has zero value. Hence, with the 

choice ( ) ( )( ) , ,r M MK X t P t T P t T= , the forward contract has zero initial value.  

Hence, by definition the forward price is: ( )
( )

( ) ,
( , )

,
r M

X M
M

X t P t T
F t T

P t T
=        (3) 



Convexity Adjustments in Inflation-linked Derivatives using a multi-factor version of the Jarrow and Yildirim (2003) Model 

 50

From (2), (3), we have shown that ( ) ( ) ( ) ( )exp ,
MT

t M r M
t

E r s ds X T X t P t T
⎡ ⎤⎛ ⎞
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∫  

 

Appendix 3    Proof of Proposition 1 
Proof: 

Our aim is to compute the expectation in equation (4.21) of proposition 1. The 

computation is complicated by the fact that we have the stochastic discounting term 

( )exp
NT

t

r s ds
⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠
∫  and we have the term ( )MX T  which has a stochastic drift. The key 

to computing the expectation will be to replace the stochastic discounting term 

( )exp
NT

t

r s ds
⎛ ⎞
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⎝ ⎠
∫  using equation (1) of Appendix 1 and to replace ( )MX T  by 

expressing it in terms of the forward CPI index ( )X MF T . Then we will have 

simplified the expectation to computing the expectation of the product of 

log-normally distributed random variables.  
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    We then substitute from equation (4) and from equation (1) of Appendix 1, and 

then we have:  
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1 1

   exp ,                                                                                                    (5)

1, , exp , ,
2

N

N n n

T

t X M M
t

T K K

N X M knjn kn N jn N
k jt

E r s ds F T T

P t T F t T s T s T dsρ σ σ
= =

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛
= −⎜

⎝

∫

∑∑∫

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

2

1 1

1                                  exp , , ,
2

1 1                                  exp , ,
2 2

M n n r

r r

T K K K

jnkn jn M kn M krX X kr M
k j kt

K K

krjr jr M kr M X
k j

s T s T s s T ds

s T s T s

ρ σ σ ρ σ σ

ρ σ σ σ

= = =

= =

⎞
⎟⎜ ⎟
⎠

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
− −⎜ ⎟
⎝ ⎠

∑∑ ∑∫

∑∑

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

   exp , { , } ,

M

NM n nr

T

t

TT K KK

t X X kr M kr kn M kn kn N kn
k k kt t

ds

E s dz s s T dz s s T dz s s T dz sσ σ σ σ
= = =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞
+ + − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∫

∑ ∑ ∑∫ ∫

    

Now the important thing is to calculate the expectation in equation (5), 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

  exp , { , } ,

exp { , } , ,

 

NM n nr

M n n r

TT K KK

t X X kr M kr kn M kn kn N kn
k k kt t

T K K K

t kn M kn kn N kn X X kr M kr
k k kt

E s dz s s T dz s s T dz s s T dz s

E s T dz s s T dz s s dz s s T dz s

σ σ σ σ

σ σ σ σ

= = =

= = =

⎡ ⎤⎛ ⎞⎛ ⎞
+ + − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎡ ⎛ ⎞⎛ ⎞
= − + + +⎢ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎝ ⎠⎣

∑ ∑ ∑∫ ∫

∑ ∑ ∑∫

( ) ( )

( ) ( )

1

1 1

       exp ,

1exp , ,                                                                                        (6)
2

  

N n

M

M

N n n

M

T K

T kn N kn
kT

T K K

knjn kn N jn N
k jT

E s T dz s

s T s T ds

σ

ρ σ σ

=

= =

⎤⎡ ⎤⎛ ⎞
⎥⎢ ⎥⎜ ⎟⎜ ⎟ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎦

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

∑∫

∑∑∫

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

 exp { , } , ,
M n n r

T K K K

t kn M kn kn N kn X X kr M kr
k k kt

E s T dz s s T dz s s dz s s T dz sσ σ σ σ
= = =

⎡ ⎤⎛ ⎞⎛ ⎞
− + + +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∑ ∑∫

Remark: Notice that we have used the tower property of expectations in the second line, and 
in the third line we have used a standard result for the expectation of the product of 
log-normally distributed random variables. 

    Now we can use the same standard result for the expectation in equation (6). 

Then we can combine equations (3), (5) and (6). After some algebra, we get 

( ) ( ) ( ) ( )
( )

,
exp ( ) , exp ( , , )

,

N MT T
N

t M r M M N
Mt t

P t T
E r s ds X T X t P t T C s T T ds

P t T

⎡ ⎤⎛ ⎞ ⎛ ⎞
− =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫                    
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where ( , , )
MT

M N
t

C s T T ds∫  is given by equation (4.22) and proposition 1 is proven. 

 

Appendix 4    Proof of Proposition 2 
Proof: 

    Our aim is to compute the expectation in equation (4.31) of proposition 2. The 

conceptual line of attack is, as in the proof of proposition 1, to reduce the problem to 

that of computing the expectation of the product of log-normally distributed random 

variables.    

    Using the tower property of expectations, we can write:  

( ) ( )
( ) ( ) ( ) ( )

( )
1

1

11 1

exp exp exp
N Ni i i

i

i

T TT
i i

t t T
i it t T

X T X T
E r s ds E r s ds E r s ds

X T X T

−

−

−− −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− = − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎣ ⎦

∫ ∫ ∫   

But the following equation holds by proposition 1,  

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )

1 1

1 1

1

1 1

1
1

1

1exp exp

,
, exp ( , , )

,

N Ni i

i i

i i

i
i

i

i

T T
i

T T i
i iT T

T
i N

r i i i N
i i T

X T
E r s ds E r s ds X T

X T X T

P T T
P T T C s T T ds

P T T

− −

− −

−

− −

−
−

−

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

∫ ∫

∫

 

Then the LHS of equation (4.31) becomes 

     

( ) ( )
( )
( )

( ) ( )
( )
( )

1

1

1

1

1
1

1

1
1

1

,
   exp , exp ( , , )

,

,
exp ( , , ) exp ,

,

i i
i

i

i

i i
i

i

i

T T
i N

t r i i i N
i it T

T T
i N

i N t r i i
i iT t

P T T
E r s ds P T T C s T T ds

P T T

P T T
C s T T ds E r s ds P T T

P T T

−

−

−

−

−
−

−

−
−

−

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥− ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦

∫ ∫

∫ ∫

 

From equations (1), (3) and (4) of Appendix 1, we have: 
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( ) ( )
( )
( )

( )
( )
( )

( )
( ) ( ) ( )

( ) ( ) ( )

1

1

1
1

1

1 1 1
1 11

1 1

,
   exp ,

,

, , 1, exp , ,
, , 2

1   exp { , , ,
2

i
i

i n n
i

n n

i

T
i N
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i it

T K K
N r i

i knjn kn i jn i
k ji r i t

K K
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E r s ds P T T

P T T

P t T P t T
P t T s T s T ds

P t T P t T

s T s T s T

ρ σ σ

ρ σ σ σ

−

−

−
−

−

− − −
= =−

= =

⎡ ⎤⎛ ⎞
⎢ ⎥−⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

−

∫

∑∑∫

∑∑ ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1

1

1

1

1
1

1 1
1 1

1
1

, }

   exp { , , }

1   exp { , , , , }
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     exp ,

i

i

i r

i r r
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T

jn N
t

T K

krX X kr i krX X kr i
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T K K
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k jt
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s T ds

s s T s s T ds

s T s T s T s T ds

E s T dz s

σ

ρ σ σ ρ σ σ

ρ σ σ σ σ
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−

−

−

−

−
=

− −
= =

−
=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

+

∫

∑∫

∑∑∫

∑∫ ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1

1

1
1 1 1

,

          exp { , } , { , }

r

i n nr

i

K

rj i rj
j
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rj i rj kn N kn kn i kn
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s T dz s

s T dz s s T dz s s T dz sσ σ σ
−

=

−
= = =

⎡ ⎛ ⎞⎛ ⎞
⎢ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎝ ⎠⎝ ⎠⎣

⎤⎛ ⎞⎛ ⎞
− + + − ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎥⎝ ⎠⎝ ⎠⎦

∑

∑ ∑ ∑∫  

    Now we can, again, use a standard result for the expectation of the product of 

log-normally distributed random variables in order to compute the expectation in the 

last equation. After some tedious algebra, we obtain the RHS of equation (4.31). 

Hence proposition 2 is proven. 

 

Appendix 5 
Now we calculate the single term *

0
1

( )min max ,1 ,1
( )

T i
t

i

X TE F C w
X T −

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

. 

Step 1     

    Denote 
1

( )
( )

i
i

i

X TX
X T −

= , then, firstly, we would like to compute the expectation of 

iX . Girsanov’s Theorem immediately shows that:  
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*

*

0 0

0

*
1 0 1

( ) ( )1 exp ( )                           (1)
( ) ( , ) ( )

T
T i i
t t

i it

X T X TE E r s ds
X T P t T X T− −

⎡ ⎤⎛ ⎞⎡ ⎤
⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

∫  

We can now make use of our results in chapter 4. 

When 1i = , since 0 0t T≡ , the RHS of equation (1) is: ( )
( )

1

0

0 1 *
1

0 1

,
exp ( , , )

,

T
r

t

P t T
C s T T ds

P t T

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠
∫ . 

When 1i > , the RHS of equation (1) is: 

   ( )
( )

( )
( )

1

1 0

0 1 0 * *
1 1

0 0 1

, ,
exp ( , , ) { ( , , ) ( , , , )}

, ,

i i

i

T T
i r i

i i i i i
i r i T t

P t T P t T
C s T T ds A s T T B s T T T ds

P t T P t T

−

−

−
− −

−

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ .  

Remark: The last but one formula follows from equation (4.21) and the last formula follows 
from equation (4.31). 

Step 2     

We can show that 
1

( )
( )

i
i

i

X TX
X T −

≡  is log-normal. To see this, we recall equation (3.33) 

and then change the probability measure to 
*TQ . We define 

( ) ( )

( ) ( )

( ) ( )

*

*

*

*

1

*

1

*

1

( , ) ,         for     1, 2,

( , ) ,         for     1, 2,

( , )

n

n

n

K
T
jn jn jnkn kn n

k
K

T
jr jr knjr kn r

k
K

T
X X knX kn

k

dz t dz t t T dt j K

dz t dz t t T dt j K

dz t dz t t T dt
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ρ σ

=

=

=

= − =

= − =

= −

∑

∑

∑

…

…  

where  ( )*T
jnz t , ( )*T

jrz t  and ( )*T
Xz t  are Brownian motions in the measure 

*TQ . In 

this measure, ( ),X iF t T  follows the stochastic equation: 

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

* * *

*

1 1

*

*

*

1 1 *

,
, ,

,

( , ) ( , )( , )cov ,
( , ) ( , ) ( , )

( , ) ( , )( , )cov ,        
( , ) ( , ) ( , )

nr KK
X i T T T

X X kr i kr kn i kn
k kX i

i i

i i

T i i

i i

dF t T
t dz t t T dz t t T dz t

F t T

dP t T dF t TdP t T dt
P t T P t T F t T

dP t T dF t TdP t Tt dW t dt
P t T P t T F t T

σ σ σ

σ

= =

= + −

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
⎛ ⎞

≡ + −⎜ ⎟
⎝ ⎠

∑ ∑

                (2)
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where ( ) ( ) ( ) ( ) ( ) ( )* * * *

1 1
1 1

( ) , , ( )
nr KK

T T T T
X X kr i kr kn i kn

k k
W t t dz t t T dz t t T dz t tσ σ σ σ

= =

⎛ ⎞
= + −⎜ ⎟
⎝ ⎠

∑ ∑  is 

a standard Brownian motion. 

Solving equation (2), we get 

    

( ) ( ) ( ) ( ) ( )* 2
1 1 1

*

*

1, , exp
2

( , ) ( , )( , )                exp cov ,               (3)
( , ) ( , ) ( , )

i i

i
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T

X i i X i
t t

T
i i

i it

F T T F t T s dW s s ds

dP s T dF s TdP s T ds
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σ σ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞

−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ ∫

∫
               

Furthermore,
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( ) ( ) ( ) ( ) ( ) ( ) ( )
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* * *
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1 1

1 11
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1 1
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1 1
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2 2 *
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i i
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− −
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⎛ ⎞
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⎝ ⎠
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∑ ∑

1

           (4)
( , )i
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F t T −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where ( ) ( ) ( ) ( ) ( ) ( )* * * *

2 1 1 2
1 1

( ) , , ( )
nr KK

T T T T
X X kr i kr kn i kn

k k
W t t dz t t T dz t t T dz t tσ σ σ σ− −

= =

⎛ ⎞
= + −⎜ ⎟
⎝ ⎠

∑ ∑  is 

a standard Brownian motion. 

Solving equation (4), we have 
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1 1

*

1

2
1 1 1 2 2 2
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2

( , ) ( , )( , )                  exp cov ,       (5)
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⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞

−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫ ∫

∫
 

Hence, we get the following expression for 
1

( )
( )

i

i

X T
X T −

: 
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( )
( )1 1 1
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*
1
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∫
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⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞

− − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

∫ ∫ ∫ ∫

 

    This shows that 
1

( )ln ln
( )

i
i

i

X TX
X T −

≡ , for each i , is normally distributed. 

Step 3    We wish to calculate the covariance matrix ( )cov ln , lni jX X . 

We can show that, when j i> ,  
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0
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∑ ∑
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∑ ∑∫

∑ ∑

. 

Or when j i= ,  
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⎛ ⎞
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∑ ∑∫

∑ ∑∫
  

Step 4    

    We calculate the correlation between ln iX
∧

 and the common factor w . Indeed,    
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since 2ln ( , )i i iX N b a
∧

∼ , then cov(ln , ) cov( ( ), )i i i ii i iX w a a w d w a aε
∧ ∧ ∧ ∧

= + =  and hence 

the correlation between ln iX
∧

 and w  is ia
∧

.  

    From Ryten (2007), which, in turn, references Jackel (2004), we know that when 

2M > , then we can approximate ka
∧

 by 
( )

11exp
2 2 1

M
ii

kk

k
a k

M M

−
∧ −

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑� , where 

( )( )
1

: ln cov ln , ln
M

k i k
i k
i

k X X
−

≠
=

=∑ , 1, 2, ,k M= … . 

    For the cases when 1M =  or 2M = , we can show that: When 1M = , then 

1 1 a
∧

= ; when 2M = , then 
1 21 2 ln ln1,  X Xa a ρ

∧ ∧

= = , where 
1 2ln lnX Xρ  is the correlation 

between 1ln X  and 2ln X . The case when 2M =  follows from Cholesky 

decomposition. 

 

Appendix 6    Parameter Estimates 
The parameters 1rσ , 1rα , 1nσ , 1nα  are estimated using the Solver in Excel to run a 

cross sectional non linear regression based on equations (6.23) and (6.24) across the 

six different maturities. The parameters Xσ , 1rXρ , 1nXρ , 1 1r nρ  are estimated from 

equations (6.25). All are estimated using monthly historical data. 

One factor model    
Table 2 

correlation Nominal 1 Real 1 CPI 
Nominal 1 1 0.7504 0.018398 

Real 1 0.7504 1 0.037818 
CPI 0.018398 0.037818 1 

 
Table 3 

1rσ  1rα  1nσ  1nα  Xσ  
0.006094 0.032193 0.007242 0.043585 0.0104 
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Two factor model  

Table 4 
correlation Nominal 1 Nominal 2 Real 1 CPI 

Nominal 1 1 -0.462963 0.5181 0.018398 
Nominal 2 -0.462963 1 0.5181 0.018398 

Real 1 0.5181 0.5181 1 0.037818 

CPI 0.018398 0.018398 0.037818 1 
 

Table 5 

1rσ  1rα  1nσ  1nα  2nσ  2nα  Xσ  
0.006094 0.032193 0.006498 0.064945 0.006332 0.000016 0.0104 
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