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Convexity Adjustments in Inflation-linked Derivatives using a multi-factor version of the Jarrow and Yildirim (2003) Model

Abstract

In this paper, we use a Gaussian HIM-type (Heath et al 1992) model for the valuation
of inflation-linked derivatives. The model is essentially that of Jarrow and Yildirim
(2003), which in turn is essentially analogous to a cross-currency model (modelling
the spot foreign exchange rate, domestic currency interest-rates and foreign currency
interest-rates). In the cross-currency FX analogy of Jarrow and Yildirim (2003),
nominal zero coupon bonds are analogous to zero coupon bonds in the domestic
currency, real zero coupon bonds are analogous to zero coupon bonds in the foreign
currency and the spot consumer price index (CPI) is analogous to the spot foreign

exchange rate.

We extend the Jarrow and Yildirim (2003) model by modelling interest-rate yield
curves with a multi-factor (rather than one factor) Gaussian HIM (Heath et al 1992)

model. Our paper is organized as follows:
Firstly, we introduce the model and our notation.

Then, we explain the valuation of standard zero coupon inflation swaps. We then
examine popular and actively-traded inflation products such as zero coupon inflation
swaps with delayed payment, period-on-period inflation swaps with both no delayed
payments and with delayed payments, using the Gaussian model (we explain what we
mean by delayed payments in section 2.4). Moreover, we give the analytical prices of
these inflation-linked derivatives, consistent with no-arbitrage. Specifically, we focus
on the “convexity adjustments” involved in pricing these products. We provide an
application of our convexity adjustment formulae to the valuation of limited price

indexation (LPI) swaps.

Finally, to specify the model, we use the same method as in Jarrow and Yildirim
(2003) to estimate the model parameters which are needed to evaluate the convexity

adjustments.
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1 Introduction

1.1 Background to inflation-linked derivatives

In recent years, the market for inflation-linked derivatives has grown very rapidly.

They are used by market participants to manage the risks of changing inflation
and changing inflation expectations in an efficient way. It is fair to say that inflation is

now regarded as an independent asset class.

There are, broadly speaking, two types of participants in the inflation derivatives
markets: those who wish to receive and those who wish to pay inflation-linked cash

flows.

Actively-traded inflation derivatives include standard zero coupon inflation
swaps, and more complicated products such as period-on-period inflation swaps
(Mercurio (2005)), inflation caps, inflation swaptions, and futures contracts written on

inflation (Crosby 2007b).

Inflation is described in terms of an inflation index. In practice, there are a
number of actively referenced inflation indices. The main indices are the HICPXT
index (which measures inflation in the Euro zone and is published by Euro stat), the
RPI (Retail Price index) (which measures inflation in the UK and is published by
National Statistics), and the US-CPI (consumer price index) (which measures

inflation in the US and is published by BLS).

Throughout this paper, we will, for the sake of brevity, refer to the inflation index
as the CPI index or the spot CPI index (even though in the UK, it would be probably
the RPI and in the Eurozone, it would probably be the HICPXT index). All of these
indices are a measure of retail or consumer price inflation. They are calculated by
collecting and comparing the prices of a set basket of goods and services, as bought

by a typical consumer, at regular intervals over time. (Reuters)
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1.2 Outline of the thesis

The remainder of this paper is structured as follows:

In chapter two, the foreign exchange analogy is explained briefly. Then, we will
provide notation and discuss the simplest type of inflation derivative, namely standard
(i.e. with no delayed payment) zero coupon inflation swaps, and show how they can
be valued in a model-independent fashion. Moreover, we will explain in detail what is

meant by indexation lag and delayed payments.

In chapter three, working within a multi-factor version of the Jarrow and Yildirim
(2003) model, we will introduce the dynamics of nominal zero coupon bond prices,

real zero coupon bond prices and the spot CPI index.

In chapter four, we compute the convexity adjustments required to value
period-on-period inflation swaps with no delayed payments, zero coupon inflation
swaps with delayed payment and period-on-period inflation swaps with delayed
payments in detail. To our best knowledge, some of these results, at least in the
context of a multi-factor Jarrow and Yildirim (2003) model, have not appeared in the

literature before.

In chapter five, we provide an application of the convexity adjustments we
computed in chapter four, to the valuation of limited price indexation (LPI) swaps, in

which we use the quasi-analytic methodology of Ryten (2007).

In chapter six, we use the methods of Jarrow and Yildirim (2003) to estimate the
model parameters from historical data. We will also illustrate our model with some

examples and comparisons.
In chapter seven, we will give the conclusions of this paper.

In the appendices, we give detailed derivations of some of the formulae that we

use.
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2 Foreign Exchange Analogy and Modeling
Inflation

We are concerned, in this paper, with Gaussian models for inflation which are
arbitrage-free and consistent with any initial term structure of interest-rates (both

nominal and real).

In this and all subsequent sections, we will always make the assumptions that the
market is frictionless, complete and arbitrage-free. These assumptions guarantee

(Harrison and Pliska (1981)) the existence of a unique equivalent martingale measure

which is denoted by Q. We use the notation E,[ ] to denote expectations at time t,
with respect to this equivalent martingale measure.

All stochastic processes are defined on a common filtered probability space
(Q,F,Q), where the filtration F is assumed to be the natural filtration generated by
the Brownian motions, which we shall shortly introduce, driving the nominal and real

interest-rate yield curves and the spot CPI index.

We denote calendar time by t. We define today (the initial time) to be time t,.

2.1 Introduction to foreign exchange methodology

2.11 Notation

The foreign exchange (FX) analogy relates to the valuation of foreign exchange

options written on a spot foreign exchange rate.

We denote the price, in domestic currency, of a (credit risk free) zero coupon
bond denominated in domestic currency, at time t, maturing attime T by P(t,T),
and the corresponding domestic short rate by r(t). We denote the price, in foreign

currency, of a (credit risk free) zero coupon bond denominated in foreign currency, at

time t, maturing at time T by P, (t,T), and the corresponding foreign short rate
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by r,(t). Let X(t) denote the spot foreign exchange (FX) rate, at time t, quoted as

the number of units of domestic currency per unit of foreign currency.

2.12 A basic valuation formula in the foreign exchange analogy

The basic derivatives valuation formula is (Harrison and Pliska (1981)): The

.
price, H, , of a derivative, attime t,,is:H, =E_ [exp(fr(s)ds} HT] , Where H;

t

is the random payout at time T .

There is a key observation for modelling cross-currency derivatives which is:

Et[exp(—TT r(s)dij (T )} =X (1)P, (L.T,) (2.11)

t

which we will refer to later in section 2.22.

Remark: The above equation is true and model-independent. To see that it is true, observe
that, P, (t,T,, )is the price of a zero coupon bond in foreign currency, at time t maturing at
time T,,,and X (t) is the price, in domestic currency, of one unit of foreign currency paid
at time t.Therefore the RHS of the equation represents the price, at time t, in domestic
currency, of one unit of foreign currency paid at time T, . In terms of the LHS,
since X (T,, ) denotes the price, in domestic currency, of one unit of foreign currency paid at
time T,,, then the conditional expectation of it, discounted to time t, represents the price, at
time t, in domestic currency, of one unit of foreign money paid at time T,,. Hence, the
equation must be true.

2.2 Modeling Inflation

The key to modeling inflation and to pricing inflation-linked derivatives is to notice
that there is a total and complete analogy between inflation-linked derivatives and

cross-currency derivatives.

The analogy is that nominal interest rates are the equivalent of domestic interest
rates, real interest rates are the equivalent of foreign interest rates and the spot CPI
inflation index is the equivalent of the spot foreign exchange rate. The FX analogy

gives an intuitive way to think about inflation. See the figure below
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Table 1 The analogy

FX rate X(t) CPI index X(t)
Domestic interest rate r(t) Nominal interest rater(t)
Foreign interest rater, (t) Real interest rate r.(t)

2.21 Notation

Let us explain some notation. We will use a subscript r to indicate real interest rates

and real zero coupon bond prices.

Let r(t) and r, (t) denote the (continuously compounded) risk-free nominal

and real short rates, at time t, respectively. Let P(t,T) and P (t,T) denote the

price of a (credit risk free) nominal and real zero coupon bond, at time t, maturing at
time T, respectively. Throughout this paper, we will often use the words “zero

coupon bond” and “discount factor” almost interchangeably, with the proviso that

discount factors are known today, time t,.

Let X(t) denote the spot CPI index, at time t, i.e. it is the value, in units of

nominal currency, of a typical basket of goods and services.

2.22 An Important Observation for inflation derivatives

The key observation for pricing inflation derivatives is that, for any times t and T,,,

with t<T,, , we have:

Etlexp(—TT r(s)ds]X (T, )} “X ()P (L.T,) (2.21)

t

Remark: The above equation is model independent. It is the analogous equation to (2.11) for
modeling inflation derivatives. To see that it is true, note that P.(t,T,, ) is the price of a real
zero coupon bond, at time t, maturing at time T,,, and X (t) is the price, in nominal
currency, at time t, of one unit of real currency paid at time t. Therefore the RHS of the
equation represents the price, at time t, in nominal currency, of one unit of real currency
paid at time T,, . In terms of the LHS, since X (T,,) denotes the price, in nominal currency,
of one unit of real currency paid at time T,,, then the conditional expectation of it discounted
to time t, represents the price, at time t, in nominal currency, of one unit of real currency
paid at time T,, . Hence, intuitively, equation (2.21) holds.

10
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Remark: In Appendix 2, we give a more mathematical proof of equation (2.21). We can use
this key observation to help price several different types of inflation-linked derivatives,
including zero coupon inflation swaps and period-on-period inflation swaps, which we will
explain in detail later.

2.3 Zero Coupon Inflation Swaps
Suppose that today, time t,, we enter into a T,, year standard zero coupon inflation

swap. As with a standard interest-rate swap, there is no up-front cost to entering into a

zero coupon inflation swap. So the value of the swap today, time t;,, must be zero.
The exchange of cash flows between the two parties only occurs at the maturity T,,
of the swap.

We wish to value the swap, at time t, where t, <t<T, . By definition, the

payoff of the zero coupon inflation swap at time T,, is:

N [ );((Tt:)) —1]— N((2+K)™ -1 (2.31)

where K is the fixed rate on the swap and N is the notional amount. We can call

the first term N(X(T,)/X(t,)-1) in the expression (2.31) the floating

(inflation-linked) side and the second term N ((1+ K)TM —1) the fixed side.

In the absence of arbitrage, the value of the swap, at time t, is:

E eXp{T r(s)dsJ[N (%Tt?))_lj_ N ((1+ k)™ 1)]}

__N ex —TMrs s - +K)™
= )Et[ p{ j ()dJX(TM)] NP(t, T, )(1+K)

t

= X (t)P.(t, T, )= NP(t,T,, ) (1+K)™
where in the last line, we have used the key observation, equation (2.21).

11
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So the value of the swap, at time t, is:

X () X (t)P.(t, T, )= NP(t,T,, ) (1+ K)™ (2.32)

which gives us a valuation formula for the value of the swap at any time.

In particular, we know that the value of the swap today, time t,, must be zero.

So setting t=t, inequation (2.32) and equating the value to zero implies:

X ()P, (5, Ty )= NP (5, T, ) (1+ K)™ .

Therefore, P (t5, Ty ) = P(ty, Ty )2+ K)™ (2.33)

Remark: Zero coupon inflation swaps are actively traded in the market and one can get
prices in the brokers. They are quoted by the fixed rate K for various maturities T,, . Hence,
we can use the last equation to obtain the real interest-rate yield-curve i.e. obtain a set of real
interest-rate discount factors (given a set of nominal interest-rate discount factors which, of
course, we can get in the usual way from the standard interest-rate swaps market), which we
can then use to price more exotic structures such as period-on-period swaps.

Remark: Comparing the methodology of Jarrow and Yildirim (2003), in which they use a
stripping method to get nominal and real zero coupon bond prices from the observed market
prices of coupon bearing bonds, it is much easier and quicker to get real discount factors from
equation (2.33). Note that, in practice, T,, is usually a whole number of years. This means we
obtain a set of real interest-rate discount factors to times which are a whole number of years from
today. When interpolating between these times, to estimate real discount factors to times which are
fractional numbers of years, one needs to be aware of the impact of seasonality. We will not
discuss seasonality further here but we refer the reader to Belgrade and Benhamou (2004) and
Kerkhof (2005).

Remark: Equations (2.32) and (2.33) are model independent and are not based on specific
assumptions concerning the evolution of interest rate yield curves or the spot CPI index, but,
indeed, simply follow from the absence of arbitrage.

2.4 Indexation lag and delayed payments

The main purpose of inflation-linked derivatives is to protect the real (i.e. after
allowing for inflation) value of future cash flows. In order to achieve a high degree of
certainty in the real value of future cash flows, the inflation-linked cash flows should
be as closely linked as possible to contemporaneous inflation. However, this is not
completely possible owing to the existence of indexation lag. This is best explained as

follows:

12
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In practice, there is a delay of a few weeks between the date on which the CPI
index is measured and the date on which the value of the CPI index is announced in
the market. This time interval is the time required to collect and process the consumer
prices required by statisticians to compute the CPI index. For example, in the United
Kingdom, the value of the CPI index (actually, one of the most closely watched
indices is called the RPI but we shall continue to call it the CPI for brevity) for a
given month is published on about the 15th of the following month. So for example,
the CPI index for May 2007 was published on about the 15th June 2007. Furthermore,
the market for sterling denominated zero coupon inflation swaps adopts the
convention that throughout a calendar month, the “base” index (the value of the index
appearing in the denominator of the payoff) is the index for two months before. So,
for example, throughout July 2007, all 25 year zero coupon inflation swaps would

have a future inflation-linked payoff (in July 2032) equal to:

The value of the CPI index for May 2032 (which will be announced in June 2032)
divided by the value of the CPI index for May 2007 (whose value was known on

approximately 15th June 2007) minus one.

This means that an investor who receives the inflation-linked payment on a 25
year zero coupon swap is not compensated for inflation over the period May to July
2032 although the investor will receive compensation for inflation over the period

May to July 2007 (before the swap commenced).

When we write X (t) as the value of the spot CPI index, what we really mean

is that X (t—g) is the actual published value of the CPI index at a time & earlier.

The value of & can actually vary slightly (between about one month and two
months). Since the value of & only changes slightly compared to the typically
maturity of inflation swaps (which is often greater than 20 years), it is the market
convention to assume that it is effectively constant. This is the convention we will
adopt. There is very little to be lost by doing so since the same convention applies at

the maturity of the inflation swap as applied at the start of the inflation swap and so

13
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any misspecification, at least partially, cancels out. One convenient benefit of
adopting this convention is that we can continue to use equation (2.33) to obtain real

interest-rate discount factors and to do so in a model-independent fashion.

There is one further issue with inflation swaps which is the issue of delayed
payments. This is sometimes called payment lag although to avoid confusion with the

concept of indexation lag, we will refer to it as delayed payments.

For standard zero coupon inflation swaps, the payment time T,, of the payoff

coincides with the argument of the value of X in the numerator of the

inflation-linked term in the payoff. So, the payment of the cash flow in equation

(2.31), namely, N (X (T, )/X (t,)-1)- N ((1+ K)™ _1), occurs at time T,, . Although,

this is indeed the most common situation, often, in practice, the payment is delayed

until some later time T . This delay is not just the standard 2 day spot settlement lag

but can be a period of a few weeks, a few months or even several years. We will refer

to such inflation swaps as inflation swaps with delayed payments.

To see how such inflation swaps have an important economic rationale, consider
a commercial property company. Suppose it has debt in the form of fixed-rate loans. It
receives rents from its tenants which it wants to pay out as the inflation-linked leg of
an inflation swap. It will receive fixed payments on the inflation swap which it will
use to pay its fixed-rate debt. Often rents will remain constant for a period of 5 years
before being reviewed. They will then be revised upwards to reflect inflation over
those intervening five years. So for example, suppose, the commercial property
company wanted to enter into an inflation swap trade, in which it paid inflation-linked
cash flows and it received fixed cash flows. The company wants to hedge the cash
flows that it will receive from its tenants in years 6, 7, 8, 9 and 10. So a suitable
inflation swap trade would be a strip of five zero coupon inflation swaps as follows.
The payoff of the five zero coupon swaps would be (we write only the inflation-linked

leg with unit notional):

14
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At the end of year 6, the company pays (x (5)/X (0)—1) . At the end of year 7, it
again pays (X (5)/X (0)-1). Atthe end of year 8, it again pays (X (5)/X (0)-1). At

the end of year 9, it again pays (X (5)/X (0)-1). Atthe end of year 10, it again pays
(X (5)/%(0)-1).

We can see that these are zero coupon inflation swaps with delayed payment

with the delay on the final swap of the strip being 5 years.
Period-on-period swaps with delayed payments also trade in the markets.

If nominal interest-rates were deterministic, then valuing these inflation swaps
with delayed payments would be trivial given a pricing methodology for valuing the
corresponding type of inflation swap with no delayed payments. However, since we
will have stochastic interest-rates, valuation is more difficult and will involve the
evaluation of additional terms which we will loosely refer to as convexity

adjustments.

15
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3 Framework of the model

In this section, we set up the dynamics of nominal zero coupon bond prices, real zero
coupon bond prices and the spot CPI index. We work within a multi-factor version of
the Jarrow and Yildirim (2003) model. It is clear that the Jarrow and Yildirim (2003)
model is a model which is, firstly, arbitrage-free and, secondly, consistent with any
initial term structure of nominal and real interest rates, since it is a HIM (Heath et al

(1992)) model.

3.1 Stochastic evolution of nominal bond prices

We assume that, under the equivalent martingale measure defined with respect to the
nominal money market account numeraire, nominal zero coupon bond prices are

stochastic and follow a Gaussian HIM model (Heath et al. 1992):

P(LT) =r(t)dt+k2=;akn (t,T)dz, (t). (3.11)

where K is the number of Brownian motions, dz,,(t), for each k, k=1..K,

denotes standard Brownian increments. Furthermore, the correlation between dz;, (t)

and dz,, (t) is p;,,. for each k and each j, j=1..K , and o (t,T), for

n?'
each k, are volatility terms which are purely deterministic functions of t and T,

satisfying o, (T,T)=0.

3.2 Stochastic evolution of real bond prices
We now describe the risk-neutral dynamics of real zero coupon bond prices. We
assume that, under the equivalent martingale measure defined with respect to the

nominal money market account numeraire, real zero coupon bond prices follow a

Gaussian HIM model (Heath et al.(1992)):
dP,(t, )
— Zperax )o. (t.T) dt+Zakr (t,T)dz, (t)  (3.2)

P(tT)

16
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where K, is the number of Brownian motions, dz, (t), for each k, k=1,..,K,,

denotes standard Brownian increments and where, for each k, k=1,..,K,, p. IS
the correlation between the spot CPI and the respective Brownian motion driving real

zero coupon bond prices. We denote the correlation between dz, (t) and dz,, (t)

by p , foreach k andeach j, j=1..,K

.
Remark: Note the “quanto drift adjustment” in equation (3.21).

3.3 Stochastic evolution of the spot CPI index

The dynamics of the spot CPI, under the equivalent martingale measure defined with

respect to the nominal money market account numeraire, are given by:

X, _
Xt

(r(t)-r(t))dt+oy (t)dz, () (3.31)

where dz, (t) denotes standard Brownian increments, the drift is the difference

between the nominal and real short rates, and o, (t) is the volatility which we

assume to be a purely deterministic function of t. Furthermore, we introduce the

notation that the correlation between dz, and dz,, for each k, k=1..,K,,is

Pax and the correlation between dz,, and dz,, for each k, k=1..,K,, and

ir
foreach j, j=1..K is pg-

Remark: It is convenient to assume all the correlations are constant (which we do in the
implementation) although all the equations in this paper would hold if they are, at most,
deterministic functions of t. We assume the correlations form a symmetric positive-definite
matrix with elements unity down the leading diagonal.

If we define the forward CPI at time t to (i.e. for the delivery at) time T
by F, (t,T ) then by no-arbitrage arguments (see Appendix 2), we know that,

Xk (t,T)

P(t,T) (3:32)

Fy (6.T)

Further, by Ito’s lemma,

17
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%:{ii'gmnain (tT)ow (t'T)—ipknxax (t) o (t.T)

_iipjnkrajn (t!T )O-kr (t,T )} dt
vor, (1)dzy (1) + Y 0 (6T)dzg ()= 3 00 (.T) 02, (1) P

Then the forward CPI index, F, (t,T), at time t, can be expressed in terms of its

value F, (t,,T), attime t,, as follows:
Fy (t’T) =Fy (to'T)

xexp{j[ax (s)dz, (s)+gakr (s,T)dz,, (5)—20kn (s,T)dz, (s)j]

)

~

K

(1 K Ky 1 & K
XeXp[I(E pjnkn jn (S T O-kn S T Ezzpkrjr jr S T Gkr (S T)
t k=L j=1 k=1 j=1
1
E z Pirx Ux Gkr )J ds (3.34)

Remark: Notice that the drift and volatility terms in the stochastic differential equation for

F, (t.T) are deterministic and that F, (t,T) is log-normally distributed.

18
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4 Exotic inflation derivatives

In chapter two, we have shown that, given the rates on standard (i.e. with no delayed
payment) zero coupon inflation swaps quoted in the market (and given nominal

discount factors), we can get real discount factors.

We were able to obtain real discount factors by valuing zero coupon inflation
swaps in a model-independent fashion. This is analogous to obtaining nominal
discount factors from LIBOR deposit rates and by “bootstrapping” swap rates, which
can also be done in a model-independent fashion. Just as nominal discount factors are
the building blocks upon which we could value more exotic interest-rate derivatives,
so real discount factors are the building blocks upon which we can value more exotic

inflation derivatives. This is the aim of this section.

We will see that the prices of these more exotic inflation derivatives are
model-dependent and therefore we will aim to value them in the Jarrow and Yildirim
(2003) model we introduced in the last section. In this section, we will value three
types of inflation swap, namely, period-on-period inflation swaps with no delayed
payments, zero coupon inflation swaps with delayed payment and period-on-period

inflation swaps with delayed payments.

The key point about the last two types of inflation swap is that they have the
same payoff as the corresponding inflation swap with no delayed payments but the
payoff is paid at a later time. When the delay in payment is very small (for example, a
few weeks), we would, intuitively, expect the difference between the values of the
corresponding swaps with no delayed payments and with delayed payments to be
small. Conversely, we shall see that the difference in values can be substantial when
the delay in payments is, for example, a few years. As we noted in section 2.4,
inflation swaps with delayed payments of five years or more are quite commonly

traded in the markets.

We now turn our attention to pricing period-on-period inflation swaps with no

delayed payments.
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4.1 Period-On-Period Inflation Swaps

Suppose that today, time t;,, we enter into a period-on-period inflation swap. The

swap is defined via a set of fixed dates T, <T, <T, <...<T,,_, <T,, where T;=t,.

These dates are usually approximately equally spaced (for example, approximately

one year apart) but they need not be.

As with a standard interest-rate swap, a period-on-period inflation swap is made

up of a series of swaplets. There are payments of Nz, (X (T,)/X (T_,)-1) against

afixedrate Nz K ateachtime T..

i, fixed i

Therefore, the payoff of the i" swaplet, for i=1,2,..,M, attime T, is:

X(T)
NZ; s [m_lj_ N7, fea K (4.11)

where K is the fixed rate on the swap, N is the notional amount, ;. is the
day-count adjusted time from T, to T, for the floating (inflation-linked) leg and

T is the day-count adjusted time from T, to T, for the fixed leg.

i, fixed

In the absence of arbitrage, the value of the swaplet, at time t, is:

E, [exp({j r(s)ds}{Nrm ( ;((TTl)) —1] — N7, fireq KH

= N7z, E, [exp(—} r(s) dsJLTi))] —P(LTIN (i + 7 e K)  (4.12)

X (Ti_1

To value the floating (inflation-linked) side, we have to consider separately two

different cases depending upon whether t>T,, or t<T,,.

First case: T, <t<T.

In this case, X (T,,) is known at time t. Therefore we can take X (T_,)
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outside of the expectation and then use the key observation, namely equation (2.21),

T

and write Etlexp(—fr(s)ds] X(Ti))]:Pr (t’T‘)x(t). Hence, equation (4.12)

t X (T X (Tia)
becomes: NZ, e RT)X(®) P(LT)N (70 + 7 prea K ) (4.13)
X (Tiy)
Second case: t, <t<T,,.

Using the law of iterated expectations in equation (4.12), we can write the value

of the swaplet, at time t, as

N7, .« E, [exp[Tf r(s)dsJ E, . [exp(]‘ r(s)ds}%” —-P(t,T,)N ( Tt T T fved K)

t

But now the key observation of equation (2.21), tells us that

'U

(TI l,T

\_/

Therefore, the value of the swaplet, at time t, is:

N7, . E {exp[ Tj ()dsJ (T,lT,)} P(LT,)N (7 + 72 s (4.14)

t

We can show (using the methodology of Appendix 4) that:

Etlexp[—TiJ.lr(s)dsJP (T T, )} P(t.T.,) PI?(itTTll)) expLTiI1 A(s, T, T,)d SJ (4.15)

t t

T KT1

-1 K,
where ! A(s, T, T, )ds = ;; ‘!‘ Prair i (5. T ) {0 (8.T,) =0y, (5.T, 4 ) Jdls

K, K, Tia

+Z j pkrjro-kr (S -I-I—l){ jl' (S’Ti—l)_o-jr (S’Ti )}dS
k=1 j=1
K, T t

+Z _[ Pirx Ox (S){O-kr (S T 1) O (S T, )}d (4.16)
k=1 %
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Remark: We call the expression (4.16) the convexity adjustment for a period-on-period
inflation swap. Notice when o, (s,T,)=0, for all k, the convexity adjustment will be
identically equal to zero. But, in this special case, real interest rates would be deterministic.

From equation (4.14) and (4.15), when t, <t <T, ,, the equation (4.12) becomes:

NZ, P(t,ﬂ_l)%exp{ j A(S,Ti_l,Ti)dsj ~P(LT)N(zim + 7 5eaK)  (417)

We can value a period-on-period inflation swap by summing up the value of all

the swaplets, being careful to use equation (4.13) when T, <t<T,, and equation

(4.17) when t, <t<T,,.

We know that the value of the swap today, time t,, must be zero. So we can set

t=t, in the last formula and equate the value of the swap to zero, to relate the fixed

rate K to the term structure of real interest-rate discount factors and to the
parameters of the stochastic processes for the interest-rate yield curves and the spot

CPI index.

Period-on-period inflation swaps are not as actively traded in the market as zero

coupon inflation swaps although it is sometimes possible to get some prices. They are
quoted by the fixed rate K for various maturities T,, . As explained earlier, we can
use zero coupon inflation swaps to get real interest-rate discount factors. In principle,
we could then use period-on-period inflation swaps (assuming we have enough of
them) to calibrate the parameters (volatilities, mean reversion rates, CPI volatility,

correlations) of the stochastic processes for the real interest-rate yield curve and the

spot CPI index.

4.2 Zero coupon inflation swaps with delayed payment

In section 2.3, we valued standard zero coupon inflation swaps when the payment of

the payoff of the swap occurred at the same time as the argument of the spot CPI
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index appearing in the numerator of the payoff. As we noted and explained in section
2.4, it is now relatively common to trade zero coupon inflation swaps where the
payment is delayed for some time, perhaps several years or more. We refer to these
inflation swaps as zero coupon inflation swaps with delayed payment. Our aim, in this
section, is to derive a valuation formula for them. Unlike with a standard (i.e. with no
delayed payment) zero coupon inflation swap, the valuation of zero coupon inflation
swaps with delayed payment involves a convexity adjustment which is

model-dependent.

Firstly, we derive a formula which, in a sense, extends the key observation of
equation (2.21) to the situation of delayed payment, although we should stress that it
is less general than equation (2.21), in the sense that it is no longer

model-independent.

Proposition 1:

Foranytimes t and T, with t, <t<T, <T,, the following equation holds:

E, {exp(—]N r(s)dsJ X (Ty, )} =X ()P (t,T,, )%exp {Tr C(s, Ty, Ty )ds} (4.21)

t tTy)
Ky K Tu
where J.C(s T, Ty )ds—;;!ﬂmr O (5. Ty ) =04 (5. Ty)} o (5, Ty )ds
K, K, Tm

n n

+
M

—
1
[N

'[ pknjn Gkn (S’TM ) - O-kn (S’TN )} O-jn (S’TM )ds
t

~
=

+
-

Pinx O x (S){O-kn(s’TN )_Gkn(S!TM )}dS (4.22)

=~
Il
N

Proof: See Appendix 3.

Remark: When T,, =T, , it is straightforward to verify that C(s,T,,,T,)=0, in which
case, equation (4.21) agrees with equation (2.21).

Remark: This formula will be used below to price zero coupon inflation swaps with delayed
payment.

Suppose that today, time t,, we enter into a zero coupon inflation swap with

delayed payment. We denote the payment time of the payoff of the swap by T, and
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we denote the maturity of the swap by T,,. We wish to value the swap, at time t,

where t, <t<T, <T,. The payoff of the zero coupon inflation swap with delayed

payment is still: N [m—lJ— N ((1+ K)TM —1)

X(t)
where K is the fixed rate on the swap and N is the notional amount.

But the payoff is paid at time T, which is some time greater than or equal to

T, - The value, at time t, of the zero coupon inflation swap with delayed payment is :

E, _exp[TjN r(s)dsJ(N ( f( ((Tt:)) —1}— N ((2+K)" 1)]}

t

e

t

-yt x| et o

_ X (t)P, (t,T,, )Mexp[? C(s,T,, ,TN)dSJ— NP (t,T,)(1+ K)TM

P(t,Ty)

Remark: Notice that in the last line we have used proposition 1.

So the value of the swap, at time t, is:

X ()P (4T, )Mexpw C(s,T,, ,TN)ds]— NP(t,T,)(1+K)™  (4.23)

P(t,Ty)

which gives us a valuation formula for the value of a zero coupon inflation swap with

X (t)

delayed payment at any time.

Remark: Comparing equation (4.23) with the equation for the value of a standard zero
coupon inflation swap with no delayed payment (equation (2.32)), we can see that there is an

P(t,Ty) (T o
extra term ———~=exp IC(S,TM,TN)dS in the inflation-linked leg.
t

P(t,Ty)
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4.3 Period-on-period inflation swaps with delayed payments

Our aim in this section is to value, at any time t, a period-on-period inflation swap

with delayed payments.

The following proposition will be the key to this because it shows that when
there are delayed payments, the valuation of period-on-period inflation swaps
involves additional convexity adjustment terms. Equation (4.31) of proposition 2
extends equations (4.15) and (4.16) which we wused in the valuation of

period-on-period inflations swaps with no delayed payments.

Proposition 2:

When t, <t<T, <T, <Ty

E, [exr{_if' r(s) dsJ%} (4.31)

i-1

P(tTy ) P (LT, T Tia
=P(t,T.,) P((t,-ri)) > ((tT,l)) exp(J' C(s,T;, Ty, )ds + J:{A(S,'I'i_l,'l'i)+ B(s, Ty, T, Ty, )}ds

i1

where C(s,T;, Ty )is given by (4.22), A(s,T.,,T;) isgiven by (4.16) and

Tia K, K, Tia

n n

[BET LT T8 =" [ A {0 (8 T1) =01 (8. T))} 00 (s.Ty, )ds

t k=1 j=1 ¢
TI -1

J. pknjn On (S T) On (S 1)} GJn (S T )dS

t

~
E

+
=
~ M
= T'Mf TM;
- -

-
N

Prajr {O-jr (s,T;) - O (S’Ti—l)} Oin (S’TNi )ds

+
i

TI

_[ pknjr O-Jr(s T—l) O-Jr(S T)}Gkn (S T )dS (432)

~

=
N

+
=~
I

o

T

L

Proof: See Appendix 4.

Remark: Notice that whenT; =T, , it is straightforward to confirm B(s, T, T;, T, )and

C(s,Ti,TNi) in equation (4.31) becomes zero, which confirms consistency with equation

(4.15).
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Suppose that today, time t,, we enter into a period-on-period inflation swap
with delayed payments. The swap is defined via a set of fixed dates

T, <T, <T,<..<T,, <T,,where T,=t,.

The period-on-period inflation swap is made up of a series of swaplets. The key
issue is that the value of the payoff of each swaplet is the same as the payoff of the

corresponding swaplet of a period-on-period inflation swap with no delayed payments

but now the payoff is paid at time T, which is some time greater than or equal toT; .

From equation (4.11), the payoff of the i"swaplet, for i=1,2,..,M, at time

X(T)

TNi is: NTi'inf [m_lj_ NTi,fixed K
i-1

where the notation is the same as in equation (4.11).

The value, at time t, of the swaplet with delayed payment, i.e. Ty =T, , is:

E, [exp[—f r(S)dsJ£Nrimf ( ;(((TTll)) —1]— N7, fied KH

=Nz, +E [exp{—} r(s)dsJLT'))] - P(t,TNI ) Nz +TineaK)  (4.33)

t X (T

To value the floating (inflation-linked) side, we have to consider separately two

different cases depending upon whether t>T,, or t<T,_,.

First case: T, <t<T.

In this case, X (T,,) is known at time t. Therefore we can take X (T;,)

outside of the expectation and write
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E, [exp( f r(s)ds} ;((TTIB)} -5 (#il) E, [exp( .tf r(s)ds} X (T, )]

L x@P(T, P(LT) fcsT.T, )
—m (t)P (1, i)WeXp Jt. (s, T, Ty, )ds

where we have used proposition 1 in the last line.

Hence, equation (4.33) becomes:

LS . (;[() ?I'(t,)-ri) i’((tt’-l:;)) eXpUC(S’Ti T, )ds]— P(t,TNi ) N (Ti,inf 7T, fixed K) (4.34)

Second case: t, <t<T,,.

Using the law of iterated expectations in equation (4.33) and by proposition 2,

we can write the value of the swaplet, at time t, as:

R (eT) P(tT)

N7, P(t.Ti) P(tT.) P(t.T)

exp( I C(s,T; Ty, )ds + i_r{A(s,TH,Ti )+B(s, T, T, Ty, )}ds

-P (t’TNi ) N (Ti,inf 7T fied K) (4.35)

Therefore, we can value a period-on-period inflation swap with delayed

payments by summing up the value of all the swaplets, being careful to use equation

(4.34) when T_, <t<T,, and equation (4.35) when t, <t<T,_,.
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5 An application of our convexity
adjustment formulae to pricing LPI swaps

Limited price indexation (henceforth LPI) swaps are a type of exotic inflation
derivative and are very common in the United Kingdom owing to the rules by which
UK pension funds are governed. The rules often require that the future benefits of
people paying into many pension funds have to rise by the year-on-year inflation rate

whenever the year-on-year inflation rate, expressed as a percentage, is between some
given levels f% and c%, where c> f . If the year-on-year inflation rate is less than
f%, the future benefits have to increase by at least f% and if the year-on-year

inflation rate is greater than c%, the future benefits are increased by only c%. In

practice, f isoften0% and c is often either 3 % or 5 % but variations do occur.

These rules effectively define the future liabilities of UK pension funds.
Unsurprisingly, there has been substantial demand for inflation derivatives, from UK
pension funds, which will give payoffs which can hedge against those liabilities. This

has provided the economic rationale for LPI swaps.

We will see that we can use the convexity adjustment formulae, that we derived

in chapter 4, to help price LPI swaps.

5.1 LPI swaps

Suppose that today, time t,, we enter into an LPI swap. The LPI swap is defined

via a set of fixed dates T, <T, <T, <---<T,, , <T,, where T, =t,. In practice, these

dates are usually approximately one year apart but they need not be. The payment of

the payoff of the swap occurs at time T~, where T" =T, . The payoff of the

inflation-linked leg of the swap at time T~ is:

!Mll(lmin[mx[;((riﬁz) -1, FJ,CD or equivalently li[min{max(;T(El)),H Fj,1+CJ
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where C and F are constants, with C > F . In practice, F is often zero but we
will assume in the following that C and F can take on any values (positive,

negative or zero) provided C>F . The period-on-period rate of inflation between

T, and T, isgivenby X(T.)/X(T,)-1. So the role of the constants C and F isto

|
cap and floor the period-on-period inflation rate over each period.

Remark: When M =1, LPI swaps could be priced by a variant of the Black (1976)
formula. When C =00 and F =—oo, the product telescopes and the LPI swap has the same
payoff as a zero coupon inflation swap. However, when C and F are finiteand M >1,
we would need to price a swap whose payoff is path-dependent. Because of the
path-dependency, they are not, in general, trivial to price. When M =2 or M =3 they
could be priced by numerical integration techniques (i.e. quadrature for the case M =2 and
cubature for the case M =3). However, in practice, LPI swaps typically have maturities
anywhere between 5 years and 40 years implying that M is between 5 and 40. When
M >4 the only feasible methodology to precisely price LPI swaps is Monte Carlo
simulation but this is CPU intensive. Hence, it would be desirable to have a fast, even if
approximate, quasi-analytic methodology to price them. Such a methodology is proposed in
Ryten (2007).

5.2 Pricing LPI swaps

In this section, we will use the methodology of Ryten (2007) to get an approximate

pricing formula for the inflation-linked leg of LPI swaps. However, firstly, we
introduce some notation: We denote by QT* the probability measure defined with

respect to the numeraire which is the zero coupon bond maturing at time T . We

denote by EtT[ | expectations, at time t, with respect to Q.

The methodology of Ryten (2007) is fully explained in Ryten (2007) so we will

just outline the approach here. It uses the idea of common factor representation.

Suppose that we have a T,, year LPI swap with M periods.

Let X, denote ;ﬂ,for 1=12,...,M.We will show in Appendix 5 that:

i-1

X(T5)

i-1

® InX, =In , foreach i, 1=12,...,M, is distributed as multi-variate

normal in our model.
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® We can calculate the covariance matrix cov(InX;,InX;) (5.21)

foreach i, j, i=12,...,.M, j=12,....M.

In general, none of the elements of this covariance matrix will be zero because

In X; will not be independent of InX; for any i and j. This lack of

independence severely complicates the problem of pricing an LPI swap. The key idea

of Ryten (2007) (see also Jackel (2004)) is to replace the covariance matrix (5.21) for

each i, j by another matrix, which is close to the actual correlation matrix in some

sense, but in which the off-diagonal elements have a simple structure.

We use the same notation as in Ryten (2007). We write X, in the form
X;=exp(az +b) where z~N(01) ; cov(InX;,InX;)=cov(z,z;)-a-a; ;

E[Xi]:exp(bi+%af).

The key idea of Ryten (2007) is to replace X, by )A(i =exp(b +a,.(ai w+ai &)),

with the following additional properties: The system w,g,...,&, IS a system of

/\2 /\2
independent N(0,1) variates, and for each i, aj+d; =1. Ryten (2007) shows how

to calculate ai and di, for each i. The variates Xi,..., X v are a representation of

the variates X,,...,X,, Vvia one common factor w and additional individual

idiosyncratic random variables ¢, i1=12,...,M.

By changing measure to QT* and using Girsanov’s Theorem, the price, at time

t, , of the inflation-linked leg of the LPI swap is:

E, [exp[] r(S)dleM[ min(max(%,“ Fj,1+ CJ]

to i=1 i-1

B | T X(T)
=P(t,, T )E, {Hmm{max[x(_r ),1+ FJ,1+CH

i=1 i-1
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= P(tO,T*)EtZ* _ﬁmin(max(fo,H Fj,1+0ﬂ

* * M A
=P(t,, T)E, |E; (Hmin[max(xi,l+F],l+C wj
i=1

* M * N
=P, TOHE, | J]E. (min(max(xi,l+FJ,l+C wJ (5.22)

_i:1
Remark: By assumption, the & are independent, and consequently, conditional on a

specific value of w, the variates Xi are independent, i.e. cov(Xi|w, X;|w)=0, when
I # . Therefore, we see that the conditional expectation of the product in the last but one line
of equation (5.22) becomes a product of conditional expectations in the last line. We have

used = (approximately equals) in the third line of equation (5.22) because the variates Xi
are, in general, only an approximate representation of the variates X;, i=12,....M.
When M <2, the representation is exact. When M >3, the representation is only
approximate. It is true that E;*[Xi]= EtTO*[Xi],vartO[InXi]:vartO[In X,] for all i, for
any value of M but when M >3, then cov(Xi, Xj) is only an approximation to

cov(X;, X;), when i=j.

We can use the methodology of Ryten (2007) to evaluate equation (5.22)
provided that we can compute the expectation and variance of X, in the probability
measure Q" . We do this in Appendix 5. Since X, is lognormal (see Appendix 5),

then denoting by ,, and afnxi the mean and variance of InX; , then

E{ [ Xi]=exp(eyy, +%a|ixi) for i=1,2,...,M . Hence, we can get the expectation of

NX,, i sy =|n(E;*[xi])_%a,2nxi.

Now we can use the following result:

If X ~N(u,,02), W~N(0,1) and p,, is the correlation between X and

W, then X|W =w is normally distributed and, furthermore,
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E[ X|W =w]= s, + pyyoxW, Var[ X|W =w]=0% (1- p§,)

In Appendix 5, we show that the correlation between InX; and w is ai, for

each i, 1=12,....M.

Now, we recall that EJ [InXi]=EJ [In X,]= sy , var, [In X:]=var, [InX,]= o2, ,

then, using the result above, we get

EtTO*[In Xi |w] = Hinx, ra Ty W, o =var, [In Xi |W] =0y 1-27)
Fi= Etz*[;(i |w] = exP(ﬂlnxi +$‘ 6|nXiW+%gi2] ’ 1=12,...M.
Finally (see Ryten (2007)), equation (5.22) becomes:

* M —_— —_— pR— — —_

P(tO,T*)EtZ |:H(Fi—CaII(Fi,l+C,O'i)+PUt(Fi,1+ F,m))} (5.23)
i=1

where Call(Fi,1+C,ci) and Put(Fi,1+F,oci) are the undiscounted prices of a

call option, with strike 1+ C, and a put option, with strike 1+ F , in the Black (1976)

formula, when the forward price is Fi and the integrated variance is Eiz.

Remark: Note that each term in the product in equation (5.23) depends on the common

factor w, through F: and Ei,and w has a standard normal N (0,1) distribution.

We can then evaluate equation (5.23) by numerically integrating the product of

M

H(Ei—Ca”(Ei,l-i-C,gi)‘f‘PUt(Ei,l-f- F,gi)) and the standard normally density

i=1
function. This gives us the price of the LPI swap at time t, (note that when M >3,

it is only an approximation).
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6 Calibration to market data

We will now calibrate our model to market data in this section.

6.1 Get historical data

6.11 Get zero coupon inflation swaps and CPI

We obtained the fixed rates being quoted in the market for sterling (GBP)
denominated zero coupon inflation swap rates, for every working day between 9th
July 2003 and 14th June 2007, with maturities, equal to 5 years, 10 years, 15 years, 20
years, 25 years and 30 years. Using equation (2.33), this allowed us to get data for real

zero coupon prices, for every working day, for these six maturities.

We also obtained historical data on the CPI index (recall that, throughout this
paper, we call the index the CPI for brevity but, in actual fact, we used the UK RPI
index). Because the CPI data is only available monthly, we decided to use only
monthly data (even though we had daily data) for nominal and real zero coupon bond
prices. We decided to use data for the 28th (or the closest working day) of each

month.

Remark: Since CPI is announced in the middle of a month (i.e. 10th-20th), the data is
somewhat noisy so we decided not to use data from this period. The choice is fairly arbitrary
but we decided to use data from the 28th of each month (or the closest working day).

6.12 Get nominal and real discount factors

We obtained nominal discount factors, in sterling (GBP), for every working day
between 1st July 2003 and 22nd June 2007, with maturities, again, equal to 5 years,
10 years, 15 years, 20 years, 25 years and 30 years. These were obtained, in the
standard fashion, from GBP LIBOR deposit rates and by bootstrapping GBP swap

rates.

Jarrow and Yildirim (2003) consider the valuation of inflation-linked instruments
in the context of the market for Treasury Inflation Protected Securities (henceforth
TIPS). TIPS are US Treasury bonds whose coupon and principal payments are linked

to US CPI. Since these are coupon bearing bonds, Jarrow and Yildirim (2003) had to
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use a stripping methodology to extract the prices of real zero coupon bonds from the
prices of coupon bearing bonds. They then used historical data of these real zero
coupon bond prices to estimate the parameters of their model. By contrast, we are
working within the context of inflation swaps. We know from equation (2.33) that
there is a simple relationship between the fixed rate quoted on standard zero inflation
swaps and real zero coupon bond prices. Hence, we do not need to employ the
stripping algorithm of Jarrow and Yildirim (2003) in order to get real zero coupon

bond prices. We simply used equation (2.33).

Before we describe how we estimated the model parameters, we need to be more
precise about the specific form of the model that we used. In chapters 3, 4, and 5, we
worked with a very general multi-factor version of the Jarrow and Yildirim (2003)
model. However, we need to bear in mind that there is not too much historical data for
inflation swaps and what data there is, may be somewhat noisy. Hence, in order to
make for a simpler estimation of parameters, throughout this chapter, we assumed that

real zero coupon bond prices are driven by just a single Brownian motion i.e. we

assumed K, =1 in equation (3.21) to simplify parameter estimation. In addition, we
assume that the volatility o, (t) of the spot CPI index is constant, i.e. we assume

that o, (t) = o, . We considered two possible specifications for nominal zero coupon

bond prices, namely that there is either one Brownian motion driving nominal zero

coupon bond prices or that there are two i.e. either K =1 or K, =2.

6.2 Get model parameters using Jarrow and Yildirim (2003)

method

In order to price the exotic inflation derivatives we discussed in chapters 4 and 5,

we need model parameters which are dependent on the specific model. Therefore,

firstly, we need to specify the volatility functions o, (t,T) and o (t,T).

Potentially, there are different forms of the volatility functions, oy, (t,T),
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o, (tT) for each k,j, k=1..,K_ ,j=1..,K., but we will consider only the

extended Vasicek form, where for each k, j we assume

o (1T)= Zﬂk (1-exp(—a, (T 1)) (6.21)
o, (t,T)z%(l—exp(—a” (T-1)) (6.22)

1

where, for each k,each j, o, , a,, o;and «, are positive constants.

6.21 One factor model

In this sub-section, we estimate model parameters for the case where we have one
Brownian motion driving nominal zero coupon bond prices i.e. when K, =1. In
addition as already stated, we assume K, =1. Using the method of Jarrow and

Yildirim (2003), the variance of zero coupon bond prices over the time interval

[t,t+a] satisfies the following equations:

o [ I e (fohe ) (6.23)
P(t,T) g

var aR(t.T) :aﬁl(l_eianl(Tit))zA (6.24)
P.(T) ar?l

Using Excel Solver, we ran a cross sectional non linear regression based on the

equations (6.23) and (6.24) acoss the six different maturities to estimate the

parameters (o,,¢,) and (o, ¢, ). To be precise, in our calibration, we solved for

the parameters which minimized the sums of squares of differences between the
historical volatilities of zero coupon bond prices of the six different maturities and the
model volatilities in equations (6.21) and (6.22). The historical volatilities were

estimated using monthly data i.e. a=1/12.

The estimates of these parameters are o, =0.006094, ¢,, =0.032193, &, =0.007242,
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a,, =0.043585 as given in table 3. These parameters provide the volatility inputs
needed for the convexity adjustments (see expression (4.16), (4.22), (4.32))

In this sub-section, we only use a one factor model when estimating model
parameters, which means we only need py, Pjx: Pun When k=1 and j=1.

From the method of Jarrow and Yildirim (2003), these parameters have the following

expression:
. :{lvar(Ax(t)j}z . :Cor(APﬂ(t,T),Axa)J
A X (t) Prl(tiT) X (t) (625)
. zcor(APm(t,T) | Ax<t)j - =cor(A u(tT). APﬂa,T)j
Put.T) ~ X(1) PutT) Rt T)

Remark: We use the historical data of CPI, nominal zero coupon bond prices and real zero
coupon bond prices, as of the 28" of each month, to estimate these parameters. The
parameters obtained are in tables 2 and 3.

6.22 Two factor model
For the case where we have two Brownian motions driving nominal zero coupon

prices i.e. when K, =2, we obtained the parameters o, a,,, G,,, s Puna DY

calibrating a two-factor Gaussian HIM model (Heath et al (1992), Babbs (1990), Hull
and White (1993)) model to the market prices of liquid European swaptions. The

results of the calibration were that we obtained model parameters as follows:

o,, =0.006498, ¢, = 0.064945, 5, = 0.006332, ,, = 0.000016
together with the correlation between these two factors p,,,, =—0.462963 as given
in tables 4 and 5. These parameters were provided by John Crosby and Lloyds TSB.
We assumed that o,,,a,,, p,,, Were as above (see also table 3). We also need to
estimate o, + Pony » Prar @8N 0, - We used the approach described on page 425 of
Brigo and Mercurio (2001). In essence, we set p,., = p,x and we set p,.. . =p,.. .
We assume that p,, and p,. are equal to the corresponding values we obtained
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for the one factor case above (see table 2). That is, we assume

Pux = Panx =0.018398. We would like to do likewise with p,,, and p,,, .
However, if we set p,.,, = p,,,, =0.7504, we find that the correlation matrix is not

positive definite. Therefore, we decided to set p,.,, = p,,,, =0.5181 because 0.5181

is the closest value which makes the correlation matrix positive definite.

Whilst we concede that this is unlikely to yield anything like perfect estimates of
these parameters, there is (as Brigo and Mercurio (2001) explain) at least a measure of
mathematical consistency about it and, in addition, given the relatively scarce amount

of data for inflation, it is a pragmatic simplification.

6.3 Give the values of convexity adjustments of exotic

derivatives

We have now obtained estimates of the model parameters needed for the
convexity adjustments (see equations (4.16), (4.22), (4.32)). We will, later in this
section, use these parameters to test the analytical formulae we derived in sections 4.1,
4.2 and 4.3, and then give some numerical examples and comparisons of the
convexity adjustments, for the three types of inflation swaps we considered in chapter

4, for different swap tenors and payment times.

John Crosby (my industry supervisor) also provided data which gives the values
of the convexity adjustment (together with standard errors of these estimates) using a
Monte Carlo methodology which was used to test and benchmark the analytical
formulae (equations (4.16), (4.22), (4.32)). The Monte Carlo simulation simulated the
CPI index level and the nominal and real yield curves by simulating underlying
Gaussian state variables and it therefore had no discretisation error bias. For the sake
of brevity, we omit the full details since they can be found in, for example, Crosby
(2005), Croshy (2007a), Dempster and Hutton (1997) and Glasserman (2004). The
Monte Carlo values we report were computed using 130 million runs (65 million runs

plus 65 million antithetic runs) which took several hours of CPU time.
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Here, thanks again John Crosby for his kindly help.

In examples 1 to 4, we use the model parameters for the case when there is one

Brownian motion driving nominal interest-rates i.e. when K =1. We plot the

convexity adjustments, graphically, in the different examples below.

Example 1: Comparison of the Monte Carlo results and the analytical formulae

In this example (figures 1, 2, and 3), we consider the convexity adjustments for

zero coupon inflation swaps with delayed payment, period-on-period swaplets with no

delayed payment and period-on-period swaplets with a 5 year payment delay.

1.0000

0.9980

0.9960

0.8940

0.9920

0.9900

convexity adjustment

0.9880

0.9860

1.0002
1.0000
0.9998
0.9996
0.9994
0.9992

0.9988
0.9986
0.9984
0.9982
0.9980

convexity adjustment

Convexity Adjustment for Zero Coupon inflation swap
with 5 years delayed payment

0.9990

B Monte Carlo
m Analytical
25 20 15 10 5
m aturity of the swap (in years)
Figure 1
Convexity Adjustment for Period-on-Period Swaplet
with no delayed payment

@ Monte Carlo
| Analytical

29--30 24--25 19--20 14--15 9--10 4--5
T(i-1)--T(i) i th swaplet time (in years)

Figure 2
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Convexity Adjustment for Period-on-Period Swaplet
with 5 Years delayed payment

1.000000

0.999500 -

0.999000

O Monte Carlo
@ Analytical

0.998500 -

convexity adjustment

0.998000 -

0.997500

24--25 19--20 14--15 9--10 4--5

T(i-1)--T(i) i th swaplet time (in years)

Figure 3

From figure 1, 2 and 3, we can see that the difference between the results from
the Monte Carlo and the analytical results of chapter 4 are very small - in fact, they
are almost zero and, whilst we have not displayed the standard errors in the graphs,
we can confirm that the analytical results are consistent with the standard errors of the
Monte Carlo simulation. We can conclude that the formulae we derived in chapter 4

are correct and that they have been correctly implemented.
Example 2: Convexity adjustments for zero coupon inflation swaps

In this example (figure 4), we compare the convexity adjustments for zero coupon

inflation swaps, with maturities T,, equal to 25, 20, 15, 10 and 5 years, when there is

no delayed payment, when there is a one year payment delay and when there is a five

year payment delay.

From figure 4, we can see that, firstly, when there is no delayed payment time,
the convexity adjustment always equals one, which is what we expect. However,
when the payment delay is increased, from zero to one year to 5 years delay, the
convexity adjustments get further away from one. In addition, as the maturity
increases from 5 years to 25 years, the convexity adjustments also get further away
from one. This illustrates that the convexity adjustments become more significant for

longer maturities and longer payment delays.
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Convexity Adjustment for Zero Coupon inflation swap
with no delay, 1 Year delay and 5 Years delayed payment

1.0020

1.0000
§ 0.9980 -
£
3 0.9960 - @ no delay
E 0.9940 ® 1 year delay
';3 0.9920 | 0O 5 years delay
>
S 0.9900 -
o

0.9880 - ] —

0.9860 L

25 20 15 10 5
maturity of the swap (in years)

Figure 4
Example 3: Convexity adjustments for period-on-period swaplets

In this example (figure 5), we perform a similar analysis to example 2, but this

time for period-on-period swaplets.

Comparision
Convexity Adjustment for Period-on-Period Swaplet
with no delay, 1 Year delay and 5Years delayed payment

1.0005

1.0000

0.9995 -

O no delay
0.9990 - B 1 year delay
O5 years delay

0.9985 -

convexity adjustment

0.9980 -

0.9975

24--25 19--20 14--15 9--10 4--5
T(i-1)--T(i) i th swaplet time (in years)

Figure 5

In figure 5, we again see that longer maturities and longer payment delays

produce convexity adjustments which are further away from one.

Example 4: The effect of the convexity adjustment on the fixed rate for zero

coupon inflation swaps.

Figure 6 shows the fixed rate K on zero coupon inflation swaps, with a
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payment delay of 5 years, for swaps of different tenors from 25 years to 5 years. The
fixed rate on the swaps when we evaluate the convexity adjustment, using equation
(4.22) and the parameters for the one factor case (see tables 2 and 3), is always lower
than the fixed rate we would obtain on the swaps if we naively assumed that no
convexity adjustment was necessary. Furthermore, the difference increases with
increasing swap tenor. At 25 years, the difference is more than 0.035% which is, from
a trader’s perspective, significant as the bid-offer spread in the market, for zero

coupon inflation swaps, is approximately 0.03%, or sometimes even less.

The fixed rate K on zero coupon inflation swaps, with a

payment delay of 5 years, for swaps of different tenors
3.20% |
3.15%
3.10%
3.05%
3.00%

2.95%

2.90% . —e—if assumed with no convexity adjustment |
=— if assumed with convexity adjustment

fixd rate K on zero coupon inflation
swaps

2.85%

25 20 15 10 5

maturity of the swap

Figure 6
Example 5:

In example 5, we use the model parameters (see tables 4 and 5), for the case when

there are two Brownian motions driving nominal interest-rates i.e. K, =2. We

compare the estimates of the convexity adjustments, obtained by Monte Carlo
simulation (we also report the standard errors in the column marked s/e) and those
obtained using the analytical formulae, for period-on-period swaplets when there is no
delayed payment, when there is a one year payment delay and when there is a five

year payment delay.

The table shows again that the formulae we derived in chapter 4 are correct and
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that they have been correctly implemented.

Conwexity Adjustment for period-on-period sweaplet with delayved payment

sle Morte Carlo | Analytical | difference T I 7
0.0000496 10008781 1.0003662 00000120 30 29 30
0.0000369 1.0006020 1.0006049 | -0.0000023 25 24 25
0.0000262 1.0003755 1.0003360 | -0.0000075 20 19 20
0.00001 71 1.0002049 1.0002131 -0.00000:51 15 14 15
0.0000096 1.0000572 1.0000532 | -0.0000010 10 9 10
0.0000036 1.0000143 1.0000146 | -0.0000003 = 4 =]
0.0000392 1.0003033 1.0003045 | -0.0000012 26 24 25
00000252 1.0001549  1.0001924  -0.0000076 21 19 20
0.0000159 1.0000951 1.0001040  -0.0000059 16 14 15
00000110 1.0000361 1.0000356  -0.0000025 11 =] 10
00000046 0.99999935  1.0000003 @ -0.0000010 E 4 ]
00000497 09990455 09990379  0.0000109 30 24 25
0.0000370 09993626 09993657  -0.0000031 25 19 20
00000263 09996226 09998306 | -0.0000031 20 14 15
00000172 09993125 09993204 | -0.0000073 15 =] 10
00000097 09999332 09999359 | -0.0000027 10 4 5

Table 6

Now, in examples 6 and 7, we will give some examples of the prices of LPI
swaps. We use the one factor model parameters (see tables 2 and 3). For the purposes
of these illustrations, we assumed that the interest-rate (both nominal and real) yield

curves were initially flat and that nominal interest rates to all maturities were 0.05 and

real interest rates to all maturities were 0.025 i.e. we assumed P(tO,T)zexp(—O.OSI' )

and P, (t,,T)=exp(-0.025T) forall T.

Example 6:
Fixed rate on LPI swaps
2.6000%
& \
2.5000% — = =
., \\
§' 2.4000% —
2]
o
-
g 2.3000% -
o)
§ -\\
B 2.2000%
X
2.1000% -
—=— (0%,3%) Monte Carlo1  —— (0%,3%) Analytical 1
1%,4%) Monte Carlo 2 1%,4%) Analytical 2
2.0000% —a— (0%,5%) Monte Carlo 3  —— (0%,5%) Analytical 3
. 0 T T T T T
1 5 10 15 25 30
periods (year), each period 1 year

Figure 7
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In figures 7, we consider three different combinations of floors and caps (which
are commonly traded in the market) namely, (0%, 3%), (0%, 5%) and (1%, 4%). For
all three different combinations, we considered LPI swaps where each period was
equal to one year, but the number of periods varied from one period, through 5, 10, 15,
25 to 30 periods and hence the maturities of the LPI swaps varied from one year to 30
years. We can see that the fixed rates obtained from the quasi-analytical methodology
of Ryten (2007) (see chapter 5) are very close to the results obtained from Monte
Carlo simulation for shorter maturities although the differences do increase for LPI

swaps with longer maturities.
Example 7:

In this example, we considered eleven different combinations of floors and caps
as indicated in table 7. We considered LPI swaps whose maturities were one year, six
years, 10 years and 25 years. For all the swaps, except those with six year maturities,
each period was a year and hence the number of periods equaled the number of years
to maturity. By contrast, the LPI swaps with six year maturities had only two periods

as each period was equal to 3 years.

1 year | 1 period LRI swap, each period 1 year

cap floar she Morte Carlo | Ryten(2007price | difference | ratetMC) % rate % diff rates %
300%  000% 000000070 097299233 | 097293187 0.00000035 | 228787090 | 2.28783385  0.00003705
300% @ 200% 000000048 097509614 | 05973503506 0.00000008 2509035861 | 2.50903004 000000857
320%  1.00% 000000069 097392085 | 097392074 0.00000014 | 238545720 | 2.38547232  0.00001483
350%  050% 000000078 097431799 | 097431786 000000014 242723467 | 242722019 000001445
400% | 1.00% 000000082 057523281 097523266 000000015 | 252340655 | 2.52339127 | 000001528
450%  1.75% 000000075 0.97Y662115| 097662107 0.00000009 | 2 BE935897 | 2.66534930  0.00000916
475% | 025% 000000091 097528576 | 097528552 0.00000024 252897271 | 2.52894779  0.00002492
500% | 000% 000000093 057529431 097523467 0.00000023 | 252993472 | 2.52931019  0.00002452
5.00%  050% 000000091 097538363 | 097538848 0.00000015 | 253978696 | 2.53977123  0.00001573
G.00%  000% 000000094 0.97534355| 097534335 0.00000017 | 253504524 | 2.53503084 000001740
12.00% | -5.00% 000000095 097531015 09753099 0.00000023 | 253153668 | 2.53151205  0.00002463

G year | 2 period LR swap, each period 3 year
cap floor =l Maonte Carlo | Ryten(2007price | difference  rate(MC) % rate % diff rates %
300% | 000% 000003750 078495325 0784952582 000000043 | 096914751 | 096913525 0.00000923
300% | 200% 000000331 078535665 078535619 000000046 | 097779400 | 097775415  0.00000936
320% | 1.00% 000000380 078796095 078796046 000000049 1033525158 | 103351471 0.00001047
350% | 050% 000000350 | 079217311 079217263 0.00000048 142334037 | 1423330015 0.00001020
400% | 1.00% 000000332 | 079927611 079327565 000000046 | 1 27389357 | 127383905  0.00000932
450% | 1.75% 000000333 080629929 080629589 000000040 1 4216733 | 142166465 000000345
475% | 025% 000000352 | 080933161 080933127 000000034 1 48514452 | 148513733 000000719
S00% | 000% 000000382 081256518 081256493 000000025 | 1 55261058 | 155260538 0.00000520
500% | 050% 000000332 081261559 081261532 000000028 | 1.55366066 | 155365489  0.00000577
EO00% | 000% 000000352 082473433 082473452 -0.00000020 | 1.80452207 | 180452609 -0.00000402
12.00% | -5.00% | 0.00000405 0855872395| 085872618 -0.00000224 | 249205301 | 249212755 -0.000044:53
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10 year , 10 period LPl swap, each period 1 year
cap floor sle Maonte Carlo Ryten(2007)price . difference | rate(MC) % rate % diff rates %
300% | 0.00% 000000800 075265347 0.751939621 000066326 2182041592 | 217303388  0.00900504
300% | 200% 000000543 077648598 077635075 000013523 250099615 | 249921085 0.00173532
320%  1.00% 000000511 076363142 076309775 000053367 233003036 | 232257666 0.00715369
350%  050% 000000520 076599335 0.76515640 000054195 236170410 | 235044742 0.01125668
400%  1.00% 000000524 077730857 077638643 000092214 251184964 | 249965194 00216770
450% | 1.75% 000000541 079369140  0.79295221 000073919 2725384593 | 271631381 0.00957118
475%  0.25% 000000837 077800100 077653877 000146223 252097785 | 250169295 0.01928486
S00% | 000% 000000842 077818173 077653418 000158761 | 252335954 | 250242433 002093562
500% | 050% 000000539 075021998 O.7787Y6S63 000145435 255018087 | 253104918 001913169
EO0% | 0.00% 000000351 0.78000321 077827080 000173241 25473333 | 252453252 002279851
12.00% | -3.00% 000000357 | 077378970  0.776E5651 000193319 253136615 | 250588632 002547983

25 year | 25 period LP swap, each period 1 year
Cap floor =l Morte Carlo Ryten(2007 price:. difference | rate(MC) % rate % diff rates %
3.00% | 000% |0.00001740 045090071 047664957 0.00425084 | 209322915 | 205697774 | 0.03625144
3.00% | 200% |000001970 052903359 052524283 0.00079076 | 245352477 | 247739297 | 0.00613150
3.20% | 1.00% 000001820 050313534 049993635 0.00319948 227797812 | 225185259 | 0.02609553
3450% | 050% |0.00001326 0505867400 050064100 0.00522640 230013144 | 225764359 | 0.04245785
400% | 1.00% |000001859 052928907 052356405 0.00572502 | 248550397 | 244093102 | 0.04457296
450% | 1.75% 000002039 056353709 0558755858 0.00475121 | 274285372 | 270754292 | 0.03501080
475% | 0.25% |000001933 053128323 052153702 0.00974620 250092114 | 242503709 | 0.07553405
a2.00% | 000% |000001920 053195743 052111639 001053906 | 250612108 | 242174715 | 0.05437390
5.00% | 050% |0.00001350 053709704 052734693 0.00975011 | 254555372 | 247043529 | 0.07511843
G.00% | 000% |000001960 053523293 052554444 001235345 255421973 | 245574113 | 0.09547860
1200% @ -800% 000001935 053523622 052016130 001507492 | 253131892 | 241421620 | 01710272

Table 7

We can see that there is (to the probabilistic errors implied by the standard errors)
perfect agreement between the prices of the LPI swaps obtained by Monte Carlo
simulation and those obtained by the quasi-analytical methodology of Ryten (2007)
(see chapter 5), for the LPI swaps with one year maturity (one period) and those with
six years maturity (two periods of three years each). This is not surprising since we
know that the quasi-analytical methodology is exact for the cases when M <2.
However, we see for the LPI swaps with 10 years maturity and 25 years maturity, the
level of approximation involved in the quasi-analytical methodology. As a rough
guide, the bid-offer spread in the market for LPI swaps is approximately 0.06%
(expressed as the fixed rate on the swap). For the LPI swaps with 10 years maturity,
the maximum (absolute) difference in the fixed rate, implied by the Monte Carlo
results and the quasi-analytical methodology, is less than 0.026% which implies, if
not perfect, certainly very accurate pricing as it is less than half the bid-offer spread.
For the LPI swaps with 25 years maturity, the accuracy does deteriorate somewhat

and is, in some cases, greater than the bid-offer spread in the market.
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We also see that the accuracy of the quasi-analytical methodology, when M > 3,
also deteriorates when the cap level is high and the floor level is low. This might
initially seem surprising since in the limiting case that C =« and F =-oo, LPI
swaps become the same as standard zero coupon swaps. However, the reason for the
deterioration in accuracy is that the quasi-analytical methodology approximates the

correlation structure.
Although, (using the notation of section 5.2), it is true that EJ:[)A(i] = EITO*[Xi],
i i T g T X(TM) &
for all i, and it is true that E] |J]X; |[=E] X0 | P(t,Ty)=P(t,T), the
i=1 0

price of a standard zero coupon swap, the approximation of the correlation structure

o MoA o M
means that E/ |:HXij| does NOT equal E/ {Hxi]when M >3.
i=1 i=1

For the sake of brevity, we only considered the Ryten (2007) methodology for the
case of conditioning on one common factor. Ryten (2007) also considers the case of
conditioning on two common factors (which means evaluating the price of a LPI swap
requires a double numerical integration). Ryten (2007) shows that (unsuprisingly)
conditioning on two common factors gives a significant improvement in the accuracy
of the methodology compared to using one common factor. We would certainly
conjecture that using two common factors would also significantly improve the
accuracy of the prices of the LPI swaps, with 10 years maturity and 25 years maturity,

which we reported in table 7. However, we leave proof of this for future research.
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7 Conclusions

The most actively traded inflation derivatives are standard (i.e. with no delayed
payment) zero coupon inflation swaps. We have shown how these can be valued in a
model-independent fashion and how they can be used to extract the term structure of

real discount factors.

Recently, there has been a substantial increase in the demand for more exotic
inflation derivative products. We have used a multi-factor version of the Jarrow and
Yildirim (2003) model, which in turn is a Gaussian HIM (Heath et al. (1992)) model,
to value some exotic inflation derivatives. The Jarrow and Yildirim (2003) model is
based on the foreign exchange analogy which treats real zero coupon bond prices
analogously to foreign (ie denominated in foreign currency) zero coupon bond prices
while the CPI index which links the nominal and real economies plays the analogous

role as the spot foreign exchange rate which links the domestic and foreign currencies.

Using the multi-factor Jarrow and Yildirim (2003) model, we have valued zero
coupon inflation swaps with delayed payment, period-on-period inflation swaps with

no delayed payments and period-on-period inflation swaps with delayed payments.

We have particularly focused on the convexity adjustments which arise in the
valuation of these latter products, including those convexity adjustments which arise

from the delay in the payment of the payoff of the swap in question.

Just as with using a Gaussian HIM (Heath et al. (1992)) model to price some
exotic interest-rate derivatives, we can conclude that a major advantage of using the
Jarrow and Yildirim (2003) model is that it is possible to price some exotic inflation
derivatives with exact analytical formulae rather than with ad-hoc methodologies or

time-consuming numerical methods.
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Appendix 1

We will make frequent use of the following equations

T T g K, K,
exp(—j r(s)dsJ: P(t,T exp( ZZpkn,n% (s.Ty)on (s Ty )dsJ
k=1 j=1

t

L 1:

. M
exp[_[ O (8, Ty )z, (S )]
P(T..Ty) P(tT, T &
e {kz_lj{akn<s,TN)—akn(s,m}dzkn(sﬂ @
o [ 355 e (1), (7)o 3, o <7
P (LT, &
R(TmTi)=Pr((:T|))eXp Ié{akr (s.T) akr(s,'l'il)}dzkr(s)] &)

perO'x {O-kr (S T, 1) Ok (S’Ti)}dsj

=~

\\Mx

Tia
exp[ [
t

1

Tia 1K K
exp{'[iz PO (8Ti1) 05 (8. Tit) — 0 (8. ) o (S.T; )}
t k=l j=1

Proof of equation (1): We can apply Ito’s lemma to equation (3.11) to get an SDE

for InP(t,T,) and then rewrite this equation in integral form from t to T, to
express P(T,,T,) in terms of P(t,T) and r(s). But then we note that

P(TN Ty ) =1. Rearranging, we get equation (1). As an aside, it is straightforward to

Etlexp(—fN r(s)dsﬂ: P(t,Ty) (4)

Proof of equation (2): We can, as in the proof of equation (1), solve the SDE of

confirm that:

equation (3.11) to get, firstly, an equation for P(T,_,,T) intermsof P(t,T,) and,

secondly, an equation for P(T._,T;) in terms of P(t,T;). If we divide the first
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equation by the second, the terms involving the nominal short rate cancel and we

obtain equation (2).

Proof of equation (3): We now solve the SDE of equation (3.21) to get, firstly, an
equation for P (T_,T,) in terms of P (t,T,), and secondly, an equation for
P (T..T.) intermsof P (t,T_). If we divide the first equation by the second, and
note that P, (T.,,T.,)=1, then the terms involving the real short rate cancel and we

obtain equation (3).

Appendix 2
Consider a forward contract with maturity T,,. The payoff of this forward contract is
X(T,,)—K, at time T, . It costs nothing to enter into a forward contract and hence

we choose K such that the forward contract has zero initial value, and the forward

price is defined to be this value of K.

The price of the forward contract at time t is:

t t

Et[exp[ff r(s)ds]{X(m—K}}Et {p[j r(s)ds]xm )}KP(nm ®

We choose K such that equation (1) equal zero. Solving the above equation,

TM
we get K =E, {exp[—fr(s)dst(TM )]/p(t,TM).Hence, by definition, the forward

t

price is:

F (tT,)=FE {exp[_t‘w r(s)ds] X (TM )}/P (t,T,\,I ) 2

t

However, we can also show that in the absence of arbitrage

Fo (6T )=X®P (1T, )/P(tTy).
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To see this, consider two portfolio’s A and B.

In portfolio A, we buy one forward contract, at time t. The payoff of the
forward contract, at time T, is X(T,,)—K. K is chosen so that the value of the
forward contract, at time t, is zero.

In portfolio B, at time t, we sell short K nominal bonds, for which we receive

KP (t,TM) units of nominal currency, which by exchanging for real currency, gives
us KP(t, T, )/X(t) units of real currency, which we then use to buy
KP(t,T,,)/ X()P(t,T,,) notional amount of real bonds. The cost of portfolio B, at
time t, is zero.

At time T, , from the maturing real bonds, we receive KP(t,T,, )/ X ()P, (t, T, )
units of real currency which we sell at rate X(T,) , to give us

(KP(t,T, )/ X ()P (t.T, ))x X(T,) units of nominal currency. We must also pay K

units of nominal currency to repay the maturing nominal bonds. Therefore, the value

of portfolio B attime T,, is (KP(t,T, )/X(®P (t,T,))xX(T,)-K.

We are free to choose K , however we wish. If we choose K to be

K =X(t)PR (t,T,)/P(t,T, ), then we can write the value of portfolio B, at time T,,,

in the form X (T,,)-K.

But with this choice of K, portfolio B has the same value, at time T,,, as
portfolio A and hence, in the absence of arbitrage, portfolio A must have the same
value as portfolio B, at time t, but we know the latter has zero value. Hence, with the

choice K =X(t)P (t,T,)/P(t.T, ). the forward contract has zero initial value.

X (P (t,T,)

P(t,Ty)

Hence, by definition the forward price is: =F (t,Ty,) 3)
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Tu

From (2), (3), we have shown that E, {exp[—j r(s)dsj X (Ty )} =X ()P (t,Ty)

t

Appendix 3 Proof of Proposition 1
Proof:

Our aim is to compute the expectation in equation (4.21) of proposition 1. The

computation is complicated by the fact that we have the stochastic discounting term

t

TN
exp(—j r(s)dsj and we have the term X (T,, ) which has a stochastic drift. The key

to computing the expectation will be to replace the stochastic discounting term

Ty
exp(_jr(s)dsj using equation (1) of Appendix 1 and to replace X (T, ) by

t

expressing it in terms of the forward CPI index F, (TM). Then we will have

simplified the expectation to computing the expectation of the product of

log-normally distributed random variables.

Set t=T =T,, in equation (3.32), i.e.F,(T,,,T, )= X (Tg()TP“ (_-II_-M ;TM ) X (Ty)
MM

then E, [exp{—T_fr(s)dSJX(TM )]:Et {exp[—?r(s)ds} Fy Ty T )] and then from

t t

the form of equation (3.34):

Fe (TuTw) “)
Tw 1 K, K, Ty 1
=F, (4T, )exp( '[ EZijnknajn (5T ) O (S, Ty )ds — _[ Eaf( (s)dsJ
t k=1 j=1 t

Tw 1 K, K, Ty Ky
eXp(‘I Ezzpkrjrajr (S1TM )O-kr (S’TM )dS— J. Z,Oerﬁx (S)O-kr (S’TM )dS

t k=1l j=1 t k=1

o) [ 959+ Eon (7 e (- Fn (T e 9|
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We then substitute from equation (4) and from equation (1) of Appendix 1, and

then we have:

t

o )] o

K K

—P(LT) R (t,TM)exp(—th%ZEqm (5T (ST, )dsJ

k=1 j=L

S1[B>7 NSRS AR

ofx()”

E{exp[?( +Zak, (sTo) +Z{«fm (5, To 0l () }+ [DIACIN ﬂ

t t k=1

N

I\JII—‘

oo | [—%iiﬂqraﬂ(s,mm(s: -

t k=l j=1

Now the important thing is to calculate the expectation in equation (5),

Ty Ky

E[[exp(TJM(UX(S)dzx(s)+k§=rl:akr(s,TM)dzkr +Z{ G (5 Ty J3lz, ( }FIZ% (5T, )z, ( )]]

t t k=1

Ty

:E{exp J'(Z{ iy (5, Ty 302, (S +Zakn 5, Ty )z, ( )+ax(s)dzx(s)+k§1:ak,(s,TM)dzk,(s)D
E, _eprN. i% $, Ty )4z, (S ]ﬂ

Wy k=1

:exp[;fkii PinGia (8T ) 3 (8, Ty )ds J (6)
{exp@M [Z{ i (5T 302, (S +Zakn 5, Ty )z, ( )+ax(s)dzx(s)+§:ak,(s,TM)dzkr(s)Jﬂ

Remark: Notice that we have used the tower property of expectations in the second line, and
in the third line we have used a standard result for the expectation of the product of
log-normally distributed random variables.

Now we can use the same standard result for the expectation in equation (6).

Then we can combine equations (3), (5) and (6). After some algebra, we get

t

E, [exp(—}N r (s)ds] X (T )} =X ()P, (t,T,) Ilzgtt'-ll'-N )) exp [Tr C(s,T,.T, )dSJ
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TM
where _[ C(s,T,,,Ty)ds is given by equation (4.22) and proposition 1 is proven.
t

Appendix 4 Proof of Proposition 2

Proof:

Our aim is to compute the expectation in equation (4.31) of proposition 2. The
conceptual line of attack is, as in the proof of proposition 1, to reduce the problem to
that of computing the expectation of the product of log-normally distributed random

variables.

Using the tower property of expectations, we can write:

[ o] o o o]

But the following equation holds by proposition 1,

E; {exp[j'1 r(s)dsJ( ;((TTIB)]] = (#H) = [exp(i r(s) ds] X (T, )}

=P (T_.T, )%exp[ ]' C(s, T Ty, )ds]

Then the LHS of equation (4.31) becomes

t P(TiuT)

=exp [j C(s,T.. T, )dS] E, !exp(T ! (s)dsJ R (TuT)

E, {exp[t{l r(s) dsJ P(T..T )Mexp( ]' @SR )ds]

P(TTy) |

P(TT,) |

t

i-1

From equations (1), (3) and (4) of Appendix 1, we have:
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Et[exp( Tifr( )dsJ (T, 1T)—|;((TT|1TTN))}

t i-17

- P(tTy) R(LT) exp(jf 1 KZKZ Prainia (8:Tis) O (S’Ti—l)dsJ

P(tT) P (LT.) 2 i
Tia 1 K K
eXp _[ Ezzpknjn{o-kn (S’Ti )O-jn (S’Ti)_o-kn (S’TNi )O-jn (S’TNi )}dSJ
t k=1l j=1
Tia K,
exp .[ kzl‘,{pero_x (S)O_kr (S’Ti—l)_pero-x (S)O-kr (S'Ti)}dsj
T k=
Tia 1K K
24 _[Ezzpkﬂf{o-kf(s’-ril)O-jF(S’Ti1)_O-kr(SvTi)Gjr(slTi)}dS]
t k=1 j=1

E{exp[ Ti% (5,T,)dz, (s Z (s,T,)dz, ( D
expﬁ(i{—ﬁn (8.Ti o (S>+:ankn (s:Ty, )z (s)+§{—akn (5T bz, (S)m

Now we can, again, use a standard result for the expectation of the product of
log-normally distributed random variables in order to compute the expectation in the
last equation. After some tedious algebra, we obtain the RHS of equation (4.31).

Hence proposition 2 is proven.

Appendix 5

X(Ti.)

Now we calculate the single term Et? [min(max(x_ﬂ-i)JJr FJ’HCJ

WJ.

, then, firstly, we would like to compute the expectation of

Step 1

X(T)

Denote X, =

i-1

X,. Girsanov’s Theorem immediately shows that:
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T X(Ti) 1 X(T)
S {X(Ti_l)} P(t,, T") [e p{ J r(S)OISJX(T. 1)] &

We can now make use of our results in chapter 4.

_|

. . . P(t,
When i=1, since t,=T,, the RHS of equation (1) is: ’( )
P(t,.T,)

exp(J'C(s T.T )ds]

0

When i>1, the RHS of equation (1) is:

P(tO,TH) R(tO’Ti)
P(to'Ti) Pr(tO’Ti*)

exp jC(s T, T")ds+ j{A(s T T)+B( T, T,T )}dsJ

t

Remark: The last but one formula follows from equation (4.21) and the last formula follows
from equation (4.31).

Step 2

X(T) . . .
We can show that X, = (T.) is log-normal. To see this, we recall equation (3.33)
i-1

and then change the probability measure to QT* . We define

dzj, (1) = dz,, (1)

pmknakn (t, T7)dt, for j=12,...K,

=
= HM?:
L

dz], (t)=dz, (t)- Zpknjrakn(tT)dt for j=12,..K,

7("_
H

Ef

dz->r<* (t) = dzX ( ) panO-kn (t T )dt

=~
1
[N

where z), (t), z], (t) and z (t) are Brownian motions in the measure Q"

this measure, F, (t,T;) follows the stochastic equation:

dFy (t,T, - K . o .

dh (1) _ oy (1)dz (1)+D o, (LT)dzg (1)-D 0, (1T ) dzg, (1)
Fx (t1T|) k=1 k=1

+COV(dP(t,T**) _dPLT) dF(t,Ti)]OIt
PtT) PT) F(T)

_ o, (t)dw,” (t)+cov(dp(t’T:) _OP(LT) dF(t’T‘)]dt @
PLT) PLT) F(LT)
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* * Kf * Kn *
where W, (t):(ax (t)dzy (t)+> o (t.T)dzg ()= o, (4T, )dzg, (t)J /O'l(t) is
k=1 k=1
a standard Brownian motion.
Solving equation (2), we get
T; T;
F (T, T) exp[jal s)w," ( j af(s)dsJ
t

eprcov(dp(ST) dP(s.T,) dF(s, T)jds] A

P(s,T') P(s, T) F(s,T.)

Furthermore,

dF, (t,T,) TRUR 0-S *
— WA\ A=) = Ux (t)dZ; (t)+zo-kr (t'Ti—l)dZIr (t)_zo-k” (t’Ti_l)dZIn (t)
Fe(6T) =] k=t

+COV(dP(t,T*)_dP(t,'I'i_l) dF(, T_l)jdt

PELT) PRT.) FT.)

= o, ()W, (t)+ cov( (4)

dP(LT") dP(LT,) dF(LT.) ),
PLT) PtT,) FtT.)

o e Ky e K, o
where W, (t):(ax (t)dzy (t)+D 0 (t.Tiy)dzg (1) =D 0 (1T, ) dz, (t)]/az(t) is
k=1 k=1
a standard Brownian motion.
Solving equation (4), we have
T -1

Fo (T T ) =R (LT, exp[ja2 dWT (s)- j%ag(s)ds]

t

exp[irCOV[dP(ST) dP(sT,,) dF(s.T,.) ] -
t PGT)  PG6T,) F(sT.)

X(T) .
X(Ty)

Hence, we get the following expression for
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X _ A1)
X(Ti—l) B FX (Ti—l’-ri—l)
_RT) PA.T.) expﬁcov[dp(s’T*) _dP(sT) dF(s,Ti)]de

P(t,T) R(tT,) P(sT)) P(sT) F(sT)

eXpL_TCOV{dP(S,T:) dP(s.T,,) dF(s.T, 1)] J
P(s,T)  P(s,T,)  F(s,T.,)

T

exp[jal s, ( {%0 S)dSJeXDL Tfffz(S)dsz*(S)+Tf%ff§(5)d3]

t t

This shows that In X, = In@, for each i, is normally distributed.
i-1

Step3  We wish to calculate the covariance matrix cov(In X;,In X ).
We can show that, when j>i,

cov(ln X;,In Xj)

Tia K, K,
= I COV( {O-kr (t T) o-kr (t 1)}dzkr _Z{ (t T) Gpn (t 1)} pn?
t, k=1 p=1
K, Ky -
{on (tT)— 0 (T, _1)}o|zkr > {ontT) -0y (t,Tj_l)}dz{,njds :
k=1 p=1
T; N K, L Ky N
+j cov[aX dzy +Y 0, (5, T)dzg =Y 0, (s, T )dz;,,
Ty k=1 p=1
K, . K o
Y{o@T) -0, T )}zl - {0, T) -0, (t,T,-_l)}dzI,njds
k=1 p=1

Or when j=i,

var[In X,] = [ ar(i (0, (L T) 0 (T 1)}dzkr—§:{ (T =0, (LT, )} 2 J

k=1 p=1

_Q
=]
x
Il
e B R
<

Kf * K” *
+| var[axdz; +Y 0, (s, T,)dzy, —zapn(s,ﬂ)dz;njds
k=1 p=1

Tia

Step 4

We calculate the correlation between In Xi and the common factor w. Indeed,
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since In Xi ~ N(b,,a”), thencov(In Xi,w) =cov(a (aiw+dig),w)=a a and hence
the correlation between InX;i and w is ai .

From Ryten (2007), which, in turn, references Jackel (2004), we know that when

v -
lzk— Zi:lk'

, Where
2(M -1)

M > 2, then we can approximate a, by a = exp ﬁ

ki = EM In(cov(InX;,InX,)), k=12,...,M.
izk
i=1

For the cases when M =1 or M =2, we can show that: When M =1, then
a,=1;when M =2, then a =1 a,=p,xnx, Where p,y .y, Iis the correlation
between InX; and

InX, . The case when M =2 follows from Cholesky

decomposition.

Appendix 6 Parameter Estimates

The parameters o,,, «,,, o,, «, areestimated using the Solver in Excel to run a

cross sectional non linear regression based on equations (6.23) and (6.24) across the

six different maturities. The parameters oy, Py, Pux: P are estimated from
equations (6.25). All are estimated using monthly historical data.

One factor model

Table 2
correlation Nominal 1 Real 1 CPI
Nominal 1 1 0.7504 0.018398
Real 1 0.7504 1 0.037818
CPI 0.018398 0.037818 1
Table 3
O an Ot 2 Ox
0.006094 | 0.032193 | 0.007242 | 0.043585 | 0.0104
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Two factor model

Table 4
correlation Nominal 1 Nominal 2 Real 1 CPI
Nominal 1 1 -0.462963 0.5181 0.018398
Nominal 2 -0.462963 1 0.5181 0.018398
Real 1 0.5181 0.5181 1 0.037818
CPI 0.018398 0.018398 0.037818 1
Table 5
O_rl arl O_nl anl O_nz anz O_X
0.006094 | 0.032193 | 0.006498 | 0.064945 | 0.006332 | 0.000016 | 0.0104
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