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Abstract

In this dissertation we compute option prices, when the log of the underlying stock price
follows a CGMY process, using different Saddlepoint approximation methods. The Saddle-
point approximation methods will be based on the Lugannani and Rice (1980) formula, as
well as on an extension which incorporates non-Gaussian bases due to Wood, Booth and
Butler (1993). We will consider Saddlepoint base distributions based on the jump diffusion
models of Merton (1976) and Kou (2002). We also consider higher-order approximations
for both Gaussian and non-Gaussian bases.

More specifically, we price Binary Cash or Nothing (BCON) style options and vanilla call
options. We demonstrate that the results produced are accurate for certain CGMY param-
eters.
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1 Introduction

The purpose of this dissertation is to use the Saddlepoint approximation technique, using
different base distributions, to construct the tail-end probabilities required to compute op-
tion prices for when the log of the stock price follows a Lévy process.

Firstly, we’ll introduce some concepts and notation that will be used throughout this dis-
sertation. We will consider a stock, whose price at time t is St, in a risk-neutral equivalent
martingale measure denoted by Q. Consider a stochastic process Xt, for time t ≥ t0 ≡ 0,
with Xt0 = 0. The risk-free interest rate is denoted by r and the dividend yield on the
stock is denoted by q - both are assumed constant. In the standard Black-Scholes model,
St evolves as:

St = St0 exp ((r − q)t+Xt), (1.1)

where Xt is a Brownian motion with volatility σ.

The drift of St under Q must be r − q. This would require EQt0 [exp (Xt)] = 1, which
means that the Brownian motion in (1.1) must have a drift term equal to: −12σ

2.

The problem with this simple continuous sample path model is that it doesn’t take into
account the volatility smile exhibited by the implied volatilities of options, sudden jumps
in stock prices, nor the asymmetric and leptokurtic (the distribution is skewed to the left,
and it has heavier tails and a higher peak that that of the Gaussian distributon) features of
stock prices. One way to account for all these features is to introduce Lévy processes into
the modelling framework.

A Lévy process is a stochastic process with stationary and independent increments, and
is continuous in probability. Brownian motion is a type of Lévy process but it is the only
Lévy process with continuous paths. Therefore, all other Lévy processes are jump processes
which have discontinuous sample paths and therefore they allow for large sudden moves in
the underlying price process, making them more suitable processes for modelling the prices
of financial assets. Additionally, jump processes can capture the effect of volatility smiles
and skews which makes them attractive for derivatives pricing. All Lévy processes (ex-
cept Brownian motion with no jumps) generate excess kurtosis, which in turn imply they
produce curvature in the implied volatility surface. Lévy processes can also, in general,
capture skewness in the risk-neutral return distributions and hence produce asymmetric
implied volatility surfaces. This indicates an improvement on the Black-Scholes model.
Some of the simplest types of Lévy processes consist of a Brownian motion component with
one or more compound Poisson processes.

The Lévy processes that we will consider in this dissertation are the following: CGMY
(2002), Merton (1976) and Kou (2002) - (the latter is also called the double exponential
jump diffusion model). Not all Lévy processes have a density function in an explicit an-
alytical form, but they all have a characteristic function, which can be used to calculate
option prices.

Let us therefore introduce some more notation. Denote the characteristic function by

1



1. INTRODUCTION

ψ(u) ≡ EQt0 [exp(iuXt)], with ψ(u) = exp(tΨ(u)), where Ψ(u) is the characteristic exponent.

If EQt0 [exp(Xt)] 6= 1, we can mean-correct it by replacing Ψ(u) with Ψ(u) − iuΨ(−i). This

is equivalent to mean-correcting Xt so that E
Q
t0
[exp(Xt)] ≡ 1, which we assume from now

on. The stock price St evolves as in equation (1.1), but now Xt is a mean-corrected Lévy
process. Therefore, the drift of the stock price St is equal to the risk-free interest rate minus
the dividend yield. The cumulant generating function of a distribution is the log of the
distribution’s moment generating function. We will denote by k(x) the cumulant function
of the distribution we are trying to approximate.

In order to calculate vanilla option prices, we need to obtain the probabilities that the
stock price is in the money, under both the risk-neutral pricing measure and the share
measure (i.e. the measure with the stock price as the numeraire). One such method to
calculate these probabilities for a model where the density function is not available in an
explicit analytical form, is the Saddlepoint approximation method. This technique, which
has its origins in a Taylor series expansion of the Fourier inversion formula, uses the model’s
cumulant function, and another distribution’s known probability density function (hence-
forth pdf) and cumulative density function (henceforth cdf) to approximate these tail-end
probabilities. The distribution whose pdf and cdf functions are used in the algorithm is
known as the “base” distribution. The most commonly used base distribution in calculating
the Saddlepoint approximation is the standard Gaussian distribution.

Rogers and Zane (1999) use the classical Saddlepoint method (i.e. standard Gaussian
base distribution) to compute option prices, by employing the Lugannini and Rice (1980)
approximation. This base is also used by Xiong, Wong and Salopek (2005) for a variety of
models with stochastic rates and volatilities. Carr and Madan (2008) use a slightly different
approach in that they identified that a vanilla option price in the Black Scholes model can
be written as a single probability with a Gaussian minus Exponential distribution. They
then apply the Saddlepoint technique using the Gaussian minus Exponential base distri-
bution to obtain this single probability, and hence the price of a vanilla call option, under
more sophisticated models such as CGMY.

In this paper, we aim to go slightly further by calculating Binary Cash or Nothing (BCON)
option prices and vanilla option prices for the CGMY model by using different bases. We
will also consider higher-order Saddlepoint approximations to see if they can produce option
values which are closer to the true option prices than those obtained by the lower-order
approximations of Lugannani and Rice (1980) and Wood, Booth and Butler (1993). The
rest of the dissertation is structured as follows:
Section 2 describes characteristics of Lévy processes in general, focussing mainly on results
which will be used later in the dissertation;
Section 3 describes in detail the methods used to construct the Saddlepoint approximations,
using as base distributions the value of a Merton (1976) jump diffusion process, or the value
of a Kou (2002) jump diffusion process;
Sections 4 and 5 look at the test results computed for BCON option prices and for vanilla
option prices, comparing the various methods;
Section 6 investigates the results from replacing the Gaussian Minus Exponential distribu-
tion in Carr and Madan’s (2008) paper with a Merton Minus Exponential distribution;
Section 7 provides the conclusions of the project.
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2 Lévy Processes

2.1 Introduction

Let (Ω,F ,Q) be a probability space, and {Ft}t0≤t<∞ a filtration which we assume satisfies
the usual conditions, with t0 ≡ 0.

Definition 2.1.1. A Lévy process Xt is a stochastic process with Xt0 = 0 with probability
one, that satisfies the following conditions:

• Xt has independent increments, i.e. for any t0 ≤ s < t, Xt−Xs is independent of Fs.

• Xt has stationary increments, i.e. for t0 ≤ t and 0 ≤ s, the distribution of Xt+s −Xt

does not depend on t.

• Xt is continuous in probability, i.e. for any ε > 0 and t0 ≤ s, limt→sP (|Xt −Xs| >
ε) = 0.

The third condition says that jumps happen at random times, and it rules out jumps at
fixed or non-random times.

A pure jump Lévy process can display either finite activity or infinite activity. In the
former case, the aggregate jump arrival rate is finite, whereas in the latter case, an infinite
number of jumps can occur in any finite time interval. Within the infinite activity category,
the sample path of the jump process can either exhibit finite variation or infinite variation.
In the former case, the aggregate absolute distance travelled by the process is finite, while
in the latter case, the aggregate absolute distance travelled by the process is infinite over
any finite time interval. (See Carr and Liuren (2004)).

Let ν(x) denote the Lévy density of a distribution. Essentially, this is the expected number
of jumps per unit of time whose size belongs to the set x. Mathematically we have:

Proposition 2.1.2. Let Xt be a Lévy process with triplet (γ, σ
2, ν)

• If ν(R) < ∞, then almost all paths of Xt have a finite number of jumps on every
compact interval. The Lévy process has finite activity.

• If ν(R) =∞, then almost all paths of Xt have an infinite number of jumps on every
compact interval. The Lévy process has infinite activity.

Proposition 2.1.3. Let Xt be a Lévy process with triplet (γ, σ
2, ν)

• If σ2 = 0 and
∫
|x|≤1 |x|ν(dx) <∞, then almost all paths of Xt have finite variation.

• If σ2 6= 0 or
∫
|x|≤1 |x|ν(dx) =∞, then almost all paths of Xt have infinite variation.

The defining feature of a compound Poisson process is that there are a finite number of
jumps in any finite time interval. The classical example of such a process is the compound
Poisson jump diffusion process of Merton (1976). Examples of infinite activity processes are

3



2. LÉVY PROCESSES

the generalized hyperbolic class of Eberlein, Keller, and Prause (1998), the variance gamma
(VG) model of Madan, Carr, and Chang (1998) and its generalization to the CGMY model
of Carr, Geman, Madan, and Yor (2002).

As mentioned in the Introduction, we will denote the characteristic function of a stochastic
process Xt by ψ(u) ≡ E

Q
t0
[exp(iuXt)]. In particular, for a Lévy process, we can write the

characteristic function in the form ψ(u) ≡ exp(tΨ(u)), where Ψ(u) is the characteristic
exponent, which is given by the Lévy Khintchine formula:

Ψ(u) = iuγ −
1

2
σ2u2 +

∫ ∞

−∞
(exp (iux)− 1− iux1(|x|<1))ν(dx),

where i =
√
−1 and γ is the drift of the Lévy process. The term iux1(|x|<1) is necessary,

intuitively speaking, to ensure that the sum of small jumps converges, and it can in fact be
omitted for Lévy processes with finite variation.

We know that the drift rate on the stock under the risk-neutral measure Q must be r − q.
Therefore, we must choose the drift term γ of the Lévy process such that EQt0 [exp(Xt)] = 1,
to have a model consistent with no arbitrage. Consequently we need:

γ = −
1

2
σ2 −

∫ ∞

−∞
(exp (x)− 1− x1(|x|<1))ν(dx).

Given the characteristic exponent, we define the cumulants, cn, via:

cn =
1

in
∂nΨ

∂un

∣
∣
∣
∣
u=0

.

In particular, EQt0 [X1] = c1 and V ar
Q
t0
[X1] = c2. The cumulants are the derivatives of the

cumulant generating function at unit time, where the cumulant generating function is the
log of the moment generating function.

For processes which can, intuitively speaking, be represented as the sum of two independent
processes, one producing up jumps and the other producing down jumps, we will split c3
and c4 into “up” and “down” components: c

up
3 , c

down
3 , cup4 , c

down
4 with c3 = c

up
3 − |c

down
3 |.

2.2 The CGMY Process

The CGMY process was introduced by Carr, Geman, Madan and Yor (2002), and is also
called the KoBoL process. Without a diffusion component, it is a pure jump process. For
our purposes, it is convenient to consider the CGMY process as two independent processes,
one producing up jumps and the other producing down jumps. Furthermore, for maximum
generality, we’ll consider the generalised form of the CGMY process which uses different
Cup, Yup and Cdown, Ydown values for the up and down components.

4



2. LÉVY PROCESSES

For Yup, Ydown 6= 0, 1, 2, the CGMY characteristic function for time T , is given by:

ψCGMY (u;σCGMY, Cup, Cdown, G,M, Yup, Ydown) = exp

(

T

(

CupΓ(−Yup)
[
(M − iu)Yup −MYup

]

+ CdownΓ(−Ydown)
[
(G+ iu)Ydown −GYdown

]

−
1

2
σ2CGMYu

2

))

,

where Cup, Cdown, G,M > 0, Yup, Ydown < 2, and Γ(.) represents the gamma function. The
term involving σ2CGMY ≥ 0 is the variance of the Brownian component for the CGMY
model. If no Brownian component is present, we set σ2CGMY = 0.

Note that the characteristic function above is NOT mean-corrected. The mean-corrected
CGMY characteristic function for time T is:

ψCGMY (u;σCGMY, Cup, Cdown, G,M, Yup, Ydown) = exp

(

T

(

iuγ −
1

2
σ2CGMYu

2

+ CupΓ(−Yup)
[
(M − iu)Yup −MYup

]

+ CdownΓ(−Ydown)
[
(G+ iu)Ydown −GYdown

]
))

,

where the drift γ is given by:

γ = −
1

2
σ2CGMY − CupΓ(−Yup)

[
(M − 1)Yup −MYup

]

− CdownΓ(−Ydown)
[
(G+ 1)Ydown −GYdown

]
.

(The condition for Yup, Ydown < 2 is required to yield a valid Lévy measure). The param-
eters Cup, Cdown intuitively are measures of the overall activity; the parameters G and M
control the rate of exponential decay on the left and right of the Lévy density respectively
- leading to skewed distributions when they are unequal. For the CGMY model, if M > G,
we get negative skewness which is typically what is observed in the equity options markets.
The parameters Yup, Ydown determine the character of both the activity and the variation
of the CGMY process. If there is no Brownian component, the CGMY process has:






finite activity and finite variation if Yup, Ydown < 0

infinite activity and finite variation if 0 ≤ max (Ydown, Yup) < 1

infinite activity and infinite variation if 1 ≤ max (Ydown, Yup) < 2






If Yup, Ydown < 0, then the CGMY process is a compound Poisson process.

(The characteristic function of the CGMY process has a different form if Yup = 0 or
Ydown = 0, or if Yup = 1 or Ydown = 1. Therefore for simplicity, when discussing the CGMY
prcoess, we will assume throughout this dissertation that neither Yup nor Ydown are equal

5



2. LÉVY PROCESSES

to zero or equal to one. The special case of the variance gamma process (Yup, Ydown = 0) is
treated separately).

The cumulants of the generalised CGMY distribution, using the method described in Sec-
tion 2.1, are:

CGMY (σCGMY, Cup, Cdown, G,M, Yup, Cdown)

c1 γ + CupM
Yup−1Γ(1− Yup)− CdownGYdown−1Γ(1− Ydown)

c2 σ2CGMY + CupM
Yup−2Γ(2− Yup) + CdownGYdown−2Γ(2− Ydown)

c
up
3 CupM

Yup−3Γ(3− Yup)

|cdown3 | CdownG
Ydown−3Γ(3− Ydown)

c
up
4 CupM

Yup−4Γ(4− Yup)

cdown4 CdownG
Ydown−4Γ(4− Ydown)

2.3 The Variance Gamma Process

The variance gamma (VG) process is a special case of the CGMY process, and can be
obtained by setting Yup = Ydown = 0 and Cup = Cdown = C in the CGMY model. Further-
more, we will assume that there is no Brownian component. The VG model has two sets
of parameterization: in terms of C,G and M, and in terms of σvg, ν and θ, where the two
are related by:

C = 1/ν,

G =

(√
1

4
θ2ν2 +

1

2
σ2vgν −

1

2
θν

)−1

,

M =

(√
1

4
θ2ν2 +

1

2
σ2vgν +

1

2
θν

)−1

.

The characteristic function of the VG process with the σvg, ν, θ parameterization for time
T is given by:

ψV G(u;σvg, ν, θ) =

(

1− iuθν +
1

2
σ2vgνu

2

)−T/ν
,

or, with the C,G,M parameterization:

ψV G(u;C,G,M) =

(
GM

GM + (M −G)iu+ u2

)TC
.

The VG process has infinite activity and finite variation. The cumulants of the VG distri-
bution with the σvg, ν, θ parameterization are:

6



2. LÉVY PROCESSES

V G(σvg, ν, θ)

c1 θ

c2 σ2vg + νθ
2

c3 3θνσ2vg + 2ν
2θ3

c4 3νσ
4
vg + 12σ

2
vgν
2θ2 + 6ν3θ4

and with the C,G,M parameterization:

V G(C,G,M)

c1
C
M −

C
G

c2
C
M2 +

C
G2

c
up
3

2C
M3

|cdown3 | 2C
G3

c
up
4

6C
M4

cdown4
6C
G4

2.4 Jump Diffusion Models

A Lévy process of jump diffusion type has the following form:

Xt = γt+ σWt +

Nt∑

i=1

Yi,

where Wt is the standard Brownian motion, Nt is the Poisson process counting the number
of jumps, and Yi are the independent and identically distributed jump sizes. We can trivially
extend the form of a jump diffusion process to allow for multiple Poisson processes.

2.4.1 The Merton Model

The Merton jump diffusion process was introduced by Merton (1976). Although Merton
only considered the case when there was a single compound Poisson process, we’ll consider
the case when there are two compound Poisson processes. The Merton (1976) model with
two compound Poisson processes can be represented in the form:

Xt = γt+ σMertWt +

N1t∑

i=1

Y 1i +

N2t∑

i=1

Y 2i

where σMert is the volatility of the Brownian component for the Merton model, Y
1
i v

N(μ1, δ
2
1) and Y

2
i v N(μ2, δ

2
2), and where N

1
t and N

2
t are the Poisson processes. (We have

7



2. LÉVY PROCESSES

used N(a, b) to denote a Gaussian model with mean a and variance b).

The mean-corrected characteristic function for time T is given by:

ψMerton(u;σMert, λ1, μ1, δ1, λ2, μ2, δ2) = exp

[

T

(

iuγ −
1

2
σ2Mertu

2 + λ1

(

exp

(

iuμ1 −
1

2
δ21u

2

)

− 1

)

+ λ2

(

exp

(

iuμ2 −
1

2
δ22u

2

)

− 1

)]

,

where

γ = −
1

2
σ2Mert − λ1

(

exp

(

μ1 +
1

2
δ21

)

− 1

)

− λ2

(

exp

(

μ2 +
1

2
δ22

)

− 1

)

,

and σMert > 0, 0 < λ1 < ∞, 0 < λ2 < ∞, δ1 ≥ 0, δ2 ≥ 0. In principle, the mean jump sizes
μ1 and μ2 can take any finite, real values. However, for our purposes (see Section 3), it will
be convenient to choose μ1 > 0 and μ2 < 0 (i.e. we choose them so that one mean jump
size is positive and one mean jump size is negative).

The cumulants of the Merton (1976) distribution with two compound Poisson processes
are:

Merton(σMert, λ1, λ2, μ1, μ2, δ1, δ2)

c1 γ + λ1μ1 + λ2μ2

c2 σ2Mert + λ1(δ
2
1 + μ

2
1) + λ2(δ

2
2 + μ

2
2)

c
up
3 λ1(3δ

2
1μ1 + μ

3
1)

|cdown3 | λ2(3δ
2
2 + μ

2
2)|μ2|

c
up
4 λ1(3δ

4
1 + 6δ

2
1μ
2
1 + μ

4
1)

cdown4 λ2(3δ
4
2 + 6δ

2
2μ
2
2 + μ

4
2)

The formulae for c4 corrects a typo in Cont and Tankov (2004).

We have decomposed c3 as c
up
3 − |c

down
3 | and c4 as c

up
4 + cdown4 . This is somewhat arbi-

trary for the Merton (1976) process as the Lévy measure has support on the whole of the
real line. However, it conforms with the intuition of the other processes we consider because
we will later (see Section 3) choose μ1 > 0 and μ2 < 0.

The Merton model has a closed form pdf and cdf. The pdf υ(.), and cdf Υ(.), of the
Merton model with two compound Poisson processes are:

υ(x) =
∞∑

k1=0

∞∑

k2=0

exp(−λ1t)(λ1t)k1

k1!

exp(−λ2t)(λ2t)k2

k2!

exp
{
− (x−γt−k1μ1−k2μ2)

2

2(σ2Mertt+k1δ
2
1+k2δ

2
2)

}

√
2π(σ2Mertt+ k1δ

2
1 + k2δ

2
2)

=
∞∑

k1=0

∞∑

k2=0

Pp(λ1t, k1)Pp(λ2t, k2)φ

(

x, γt+ k1μ1 + k2μ2,
√
σ2Mertt+ k1δ

2
1 + k2δ

2
2

)

.

8



2. LÉVY PROCESSES

Υ(x) =
∞∑

k1=0

∞∑

k2=0

Pp(λ1t, k1)Pp(λ2t, k2)Φ

(

x, γt+ k1μ1 + k2μ2,
√
σ2Mertt+ k1δ

2
1 + k2δ

2
2

)

.

where Pp(a, b) is the density (or mass function) of the Poisson distribution evaluated at a
non-negative integer b, with intensity rate a; and φ(x, a, b) and Φ(x, a, b) are the density and
distributions functions respectively of a Gaussian distribution evaluated at x, with mean
a, standard deviation b. We will use φ(x) and Φ(x) to denote the standard Gaussian (i.e.
mean 0, standard deviation 1) density and distribution functions, evaluated at x.

2.4.2 The Kou Model

Kou introduced his jump diffusion model in 2002. In this model, Yi is a sequence of
independent and identically distributed non-negative random variables such that Yi has an
asymmetric double exponential distribution. Therefore,

Yi
d
=






ξ+ with probability p

ξ− with probability 1− p

where ξ+ and ξ− are exponential random variables with means 1η1 and
1
η2
respectively, and

where the notation
d
= denotes “equal in distribution”. We will only consider one Poisson

process for this model as the Kou (2002) model already takes into account the separate up
and down jumps.

The mean-corrected characteristic function for time T is given by:

ψKou(u;σKou, λ, η1, η2, p) = exp

(

T

(

iuγ −
1

2
σ2Kouu

2 + iuλ

(
p

η1 − iu
−
1− p
η2 + iu

))

,

where

γ = −
1

2
σ2Kou − λ

(
p

η1 − 1
−
1− p
η2 + 1

)

,

and σKou > 0, λ > 0, η1 > 0, η2 > 0, 0 < p < 1. (σKou is the volatility of the Brownian
component for the Kou (2002) model).

The cumulants of the Kou (2002) distribution are:

Kou(σKou, λ, η1, η2, p)

c1 γ + λ( pη1 −
1−p
η2
)

c2 σ2Kou + 2λ(
p
η21
+ 1−p

η22
)

c
up
3 6λ( p

η31
)

|cdown3 | 6λ(1−p
η32
)

c
up
4 24λ( p

η41
)

cdown4 24λ(1−p
η42
)

9



2. LÉVY PROCESSES

The formulae for c3 and c4 correct typos in Cont and Tankov (2004).

The Kou (2002) model does not have a truly closed form pdf and cdf. However, Kou
(2002) does have a semi-analytical expression for the cdf in terms of Hh functions, which
is a special function used in mathematics. As a result, the pdf can be found by differenti-
ating this probability. Recalling that the jump diffusion process is represented by the form
Xt = γt + σKouWt +

∑Nt
i=1 Yi, the complementary cdf of the Kou (2002) model with one

compound Poisson process is:

P(XT ≥ a) =
e((σKouη1)

2 T
2
)

σKou
√
2πT

∞∑

n=1

πn

n∑

k=1

Pn,k(σKou
√
Tη1)

kIk−1

(

a− γT ;−η1,−
1

σKou
√
T
,−σKouη1

√
T

)

+
e((σKouη2)

2 T
2
)

σKou
√
2πT

∞∑

n=1

πn

n∑

k=1

Qn,k(σKou
√
Tη2)

kIk−1

(

a− γT ; η2,
1

σKou
√
T
,−σKouη2

√
T

)

+ π0Φ

(

−
a− μT

σKou
√
T

)

, (2.1)

where:

πn = P(N(T ) = n) =
e−λT (λT )n

n!
;

Pn,k =
n−1∑

i=k

(
n− k − 1
i− k

)(
n

i

)(
η1

η1 + η2

)i−k ( η2

η1 + η2

)n−i
piqn−i,

with Pn,n = p
n;

Qn,k =
n−1∑

i=k

(
n− k − 1
i− k

)(
n

i

)(
η1

η1 + η2

)n−i( η2
η1 + η2

)i−k
pn−iqi,

with Qn,n = q
n.

If β > 0 and α 6= 0, then for all n ≥ −1:

In(c;α, β, δ) = −
eαc

α

n∑

i=0

(
β

α

)n−i
Hhi(βc− δ) +

(
β

α

)n+1 √2π
β

e
αδ
β
+ α

2

2β2Φ

(

−βc+ δ +
α

β

)

.

If β < 0 and α < 0, then for all n ≥ −1:

In(c;α, β, δ) = −
eαc

α

n∑

i=0

(
β

α

)n−i
Hhi(βc− δ)−

(
β

α

)n+1 √2π
β

e
αδ
β
+ α

2

2β2Φ

(

βc− δ −
α

β

)

.
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where:

Hhn(x) =

∫ ∞

x

Hhn−1(y)dy, n = 0, 1, 2, ...,

Hh−1(x) = e−
x2

2 =
√
2πφ(x),

Hh0(x) =
√
2πΦ(−x).

Although the equation above for P(XT ≥ a) is an infinite series, Kou (2002) notes that
typically only 10 to 15 terms need to be calculated, depending on the required precision,
as the series converges very quickly. We have run some tests (not reported) which demon-
strate that for most Kou parameters, for an accuracy to 6 decimal places, between 11 to
18 terms are required to be calculated. When the Kou parameters are very small (eg.
λ = 0.2518, η1 = 11.4425, η2 = 5.7004, p = 0.4169), less than 10 terms need to be calculated
for an accuracy to 6 decimal places.

The density function can be found by analytically differentiating the probability P(XT ≥ a),
and multiplying by minus one. We note, as an aside, that we checked our analytical formula
for the density function by numerically differentiating the equation for P(XT ≥ a) and con-
firming that the results matched to a significant number of decimal places. For very extreme
values of a, we did notice that the Matlab implementation of the formula for P(XT ≥ a)
did suffer from numerical instabilities (see Appendix D for a detailed explanation).
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3 Saddlepoint Method

Saddlepoint approximations are powerful tools for obtaining accurate expressions for distri-
bution functions which are not known in closed form. Saddlepoint approximations almost
always outperform other methods with respect to computational costs, though not neces-
sarily with respect to accuracy. Suppose we have a random variable Y whose distribution
function is not known in closed form. We wish to compute the probability P(Y > y), that
the random variable exceeds some value y.

Saddlepoint approximations use a “base” distribution with known pdf and known cdf to
approximate tail-end probabilities for the random variable Y . The original method of Lu-
gannani and Rice (1980) uses the standard Gaussian distribution as the base distribution.
However, any distribution with known pdf and cdf could, in principle, be used as the base.
In practice, the approximation would be more accurate if we use a base distribution which,
loosely speaking, resembles or behaves likes the distribution of the random variable Y that
we’re interested in. What “resembles” or “behaves like” means is difficult to define exactly
in general, but we will provide examples later in this section. This is based on matching
some low-order derivatives of the cumulant function of the random variable Y to the deriva-
tives of the cumulant function of the base distribution, at some chosen value. When this
chosen value is zero, this is equivalent to moment matching.

We are interested in evaluating probabilities under the risk-neutral measure Q, that the
stock price ST , at time T , is greater than or less than some strike K. That is, we wish to
calculate P(ST > K) or P(ST < K). From equation (1.1), this is the same as calculating
P(XT > log (

K
St0
)− (r − q)(T − t0)) or P(XT < log (

K
St0
)− (r − q)(T − t0)).

If we multiply these probabilities by the discount factor exp (−r(T − t0)), we obtain the
prices, at time t0, of Binary Cash or Nothing (BCON) options (for calls and puts respec-
tively), with maturity T .

In general (such as for the CGMY process), neither the pdf nor the cdf of XT are known
in closed form. This motivates the use of Saddlepoint approximations. The simplest Sad-
dlepoint approximations are based on using a Gaussian distribution, which could also be
viewed as the value of an approximating Brownian motion at time T . Lévy processes have
independent increments and so, intuitively speaking, the Central Limit Theorem suggests
that the value of the Lévy process at time T , XT , will be better approximated by a Gaus-
sian distribution for larger T . This suggests that using a Gaussian distribution as the base
will work better for pricing options with longer maturities. Numerical examples in Rogers
and Zane (1999) support this intuition.

On the other hand, Lévy processes have jumps, skewness (in general) and excess kurtosis
which are features not captured by a Gaussian distribution. Therefore, in this disserta-
tion, we will be constructing Saddlepoint approximations using the following as the base
distributions: the value, at time T , of a Merton (1976) jump diffusion process with two
Poisson processes and the value, at time T , of a Kou (2002) jump diffusion process. We
will informally refer to these base distributions as the Merton and Kou distributions.

12



3. SADDLEPOINT METHOD

3.1 Saddlepoint Formula

3.1.1 Lower-Order Formula

Proposition 3.1.1. Consider a random variable Y with cumulant function k(t). Then
the probability that Y exceeds some value y is approximated by Wood, Booth and Butler’s
(1993) lower-order Saddlepoint approximation formula for a general base distribution with
cumulant function g(t):

P(Y > y) ≈ P(Ybase > ybase) + h(ybase)




√
g
′′(s)

t̂

√
k
′′(t̂)
−
1

s



 , (3.1)

where h represents the pdf of the base distribution;
t̂ can be obtained by solving k

′
(t̂) = y;

s is obtained by solving: sg
′
(s)− g(s) = t̂k

′
(t̂)− k(t̂), and then applying sgn(s) = sgn(t̂);

and ybase = g
′
(s).

Proof. See Wood, Booth and Butler (1993).

Corollary 3.1.2. When the base distribution is a Gaussian distribution, equation (3.1)
reduces to the Lugannani and Rice (1980) Saddlepoint approximation formula:

P(Y > y) ≈ 1− Φ(s) + φ(s)

(
1

u
−
1

s

)

,

where t̂ can be obtained by solving k
′
(t̂) = y;

and u = t̂
√
k
′′(t̂) and s = sgn(t̂)

√
2|(yt̂− k(t̂))|.

Proof. The cumulant function of a standard Gaussian distribution and the corresponding
first and second derivatives are:

g(x) =
1

2
x2, g

′
(x) = x, g

′′
(x) = 1.

Therefore, solving for s:

t̂k
′
(t̂)− k(t̂) = sg

′
(s)− g(s)

= s2 −
1

2
s2

=
1

2
s2.

Therefore s = sgn(t̂)
√
2|(yt̂− k(t̂))|, and ybase = g

′
(s) = s.

Finally, putting this together we have:

P(Y > y) ≈ 1− Φ(s) + φ(s)



 1

t̂

√
k
′′(t̂)
−
1

s



 ,

as required.

13
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Proposition 3.1.3. If the base distribution is a ‘shift and scale’ of the distribution of the
random variable Y , then the results from the Saddlepoint approximation are exact.

Proof. If the base distribution is a shift and scale of the distribution of Y , then the cumulant
function and first and second derivatives of Y and the base distribution are related by:

k(x) = ax+ g(bx), k
′
(x) = a+ bg

′
(bx), k

′′
(x) = b2g

′′
(bx),

where a and b are constants.
Then solving for s:

sg
′
(s)− g(s) = t̂k

′
(t̂)− k(t̂)

= t̂(a+ bg
′
(bt̂))− (at̂+ g(bt̂))

= t̂bg
′
(bt̂)− g(bt̂).

sg
′
(s)− t̂bg

′
(bt̂) = g(s)− g(bt̂).

Since s = bt̂, we get: sg
′
(s)− sg

′
(s) = g(s)− g(s) = 0.

The third term in equation (3.1) becomes:

√
g
′′(s)

t̂

√
k
′′(t̂)
−
1

s
=

√
g
′′(bt̂)

t̂

√
b2g

′′(bt̂)
−
1

bt̂

=

√
g
′′(bt̂)

bt̂

√
g
′′(bt̂)

−
1

bt̂

= 0.

Then the Saddlepoint formula in equation (3.1) reduces to:

P(Y > y) = P(Ybase > ybase).

This shows that the Saddlepoint approximation is exact in the special case of the base
distribution being a ‘shift and scale’ of the distribution of the random variable Y .

3.1.2 Higher-Order Formula

A higher-order Saddlepoint approximation contains more terms, and therefore, intuitively
speaking, it should provide more accurate results. The notation is the same as in the lower-
order formula, but we’ll also need to introduce some more notation in order to simplify the
formula:

u =

√
g
′′(s)

t̂

√
k
′′(t̂)

, ζ
′

(r) =
g(r)(s)

(g(2)(s))
r
2

, ζ(r) =
k(r)(t̂)

(k(2)(t̂))
r
2

,

where k(r)(t̂) is the rth derivative of the cumulant function of the distribution that we are
approximating and g(r)(s) is the rth derivative of the base distribution’s cumulant function.
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General Base Distribution

The higher-order Saddlepoint formula is as follows (see Taras, Cloke-Browne, Kalimtgis
(2005)):

P(Y ≥ y) ≈ P(Ybase > ybase)+
γ(ybase)

δ

[(
1

u
−
1

s

)

+
1

8

(
ζ4

u
−
ζ
′

4

s

)

−
5

24

(
(ζ3)

2

u
−
(ζ
′

3)
2

s

)

−
1

2
√
g(2)

(
ζ3

u2
−
ζ
′

3

s2

)

−
1

g(2)

(
1

u3
−
1

s3

)]

, (3.2)

where

δ = 1 +
1

8
ζ
′

4 −
5

24
(ζ
′

3)
2.

Gaussian Base Distribution

We will use a slightly different higher-order Saddlepoint formula for the Gaussian base
distribution, which is not a direct extension of the lower-order formula seen in equation
(3.1). The higher-order Saddlepoint formula for a Gaussian base distribution is as follows
(see Chen (2008)):

P(Y ≥ y) ≈ H(−t̂)

+ e(k(t̂)−yt̂)

[

sgn(t̂)Φ

(

−|t̂|
√
k
′′(t̂)

)

e

(
k
′′
(t̂)t̂2

2

)(

1−
t̂3k

′′′
(t̂)

6
+
t̂4k

′′′′
(t̂)

24
+
t̂6(k

′′′
(t̂))2

72

)

+
1

72
√
2π(k′′(t̂))

5
2

{

3k
′′
(t̂)(1− k

′′
(t̂)t̂2)(t̂k

′′′′
(t̂)− 4k

′′′
(t̂))

− t̂(k
′′′
(t̂))2(3− t̂2k

′′
(t̂) + t̂4(k

′′
(t̂))2)

}]

, (3.3)

where H(.) is the Heaviside function.

3.2 Moment Matching

In this dissertation, we will use the Gaussian, Merton and Kou distributions as the base
distributions. The reasons for these choices is as follows: The Gaussian distribution is the
most common distribution to use as the Central Limit Theorem shows that it is a limiting
distribution for, essentially, all models with independent increments and finite variance.
The Merton and Kou distributions will be able to capture additional features such as skew-
ness and kurtosis.

In order for the Merton and Kou bases to produce good results, we require, intuitively
speaking, the base distributions to closely resemble the distribution that we are attempting
to approximate. In principle, this can be achieved by a number of methods. One of these

15
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methods, which we will consider in this subsection, is to use moment matching.

Suppose we are given a stochastic process which has up and down jumps with a given
variance c2, and cumulants c

up
3 , c

up
4 , c

down
3 and cdown4 for the up and down components re-

spectively. Our aim is to find the parameters of the Merton and Kou models which have
the same values of c2, c

up
3 , c

up
4 , c

down
3 and cdown4 as that of the model we are trying to ap-

proximate. We will never need to match the cumulant c1 = EQt0 [X1], since this will be
determined by risk-neutral considerations.

3.2.1 The Merton Model

We have 7 parameters to estimate in the Merton model (σMert, λ1, λ2, μ1, μ2, δ1, δ2). Firstly,
we note that we wish to match 5 values (c2, c

up
3 , c

up
4 , c

down
3 and cdown4 ) with 7 parameters,

so we have 2 degrees of freedom. Secondly, we wish to avoid any procedure based on a
multi-dimensional least squares fit over all 7 parameters, since such procedures are often
ill-conditioned and produce unstable parameter estimates. For the rest of the analysis in
this section, we will assume that the cumulants c2, c

up
3 , c

up
4 , c

down
3 and cdown4 refer to those

of the distribution we are approximating. The cumulants of the Merton (and Kou) models
will be given explicitly.

We start off by setting δ1 = α1μ1 and δ2 = α2μ2, and preselecting α1 and α2 to be
small so that the probability of the up process producing down jumps is negligible and the
probability of the down process producing up jumps is negligible. In all our examples, we
chose α1 = α2 = 0.25 because then the former probabilities are equal to 1−Φ−1(4), which
is certainly extremely small. Then, by dividing cup4 by c

up
3 and dividing c

down
4 by |cdown3 |,

the cumulants are now a function of only one unknown variable:

c
up
4

c
up
3

= μ1

[
3α41 + 6α

2
1 + 1

3α21 + 1

]

,
cdown4

|cdown3 |
= |μ2|

[
3α42 + 6α

2
2 + 1

3α22 + 1

]

,

where we have used the cumulants of the Merton model given in the table in Section 2.4.1.

This gives us values of μ1 and |μ2|. We set μ2 = −|μ2|. By matching the values of
c
up
3 and c

down
3 with the up and down components of the third derivative of the cumulant

function for the Merton model, we can obtain the values of λ1 and λ2. Finally, by matching
the variance of both distributions, we can rearrange the equation to obtain σ2Mert, provided
that the parameters are such that σ2Mert is non-negative which, in general, is not guaranteed
- but which was the case for all the parameter sets considered in this dissertation. This
method is flexible as, if the stochastic process whose cumulants we are trying to match has
only up jumps or only down jumps, such as for example the CGYSN process of Carr and
Madan (2008), we can do essentially the same procedure as above but now just fit a Merton
(1976) process with one compound Poisson jump process.

3.2.2 The Kou Model

We have 5 parameters to estimate in the Kou model (σKou, λ, η1, η2, p).

By dividing cup3 by c
up
4 and dividing c

down
3 by cdown4 , the cumulants are now a function
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of only one variable:

c
up
3

c
up
4

=
η1
4
,

cdown3

cdown4

= −
η2
4
,

where we have used the cumulants of the Kou model given in the table in Section 2.4.2.

This gives us values of η1 and η2. Then by dividing c
up
3 by c

down
3 , we obtain an expres-

sion in terms of the unknown p, and the known η1 and η2:

c
up
3

cdown3

= −
p

η31

η32
(1− p)

.

Rearranging this equation would give us p. By matching values of cup3 (or c
down
3 ) with the up

(or down) components of the third derivative of the cumulant function for the Kou model,
we can obtain the value of λ. Finally, by matching the variance of both distributions, we
can rearrange the equation to obtain σ2Kou.

One can see that the moment matching method for the Kou model is more straightfor-
ward to fit than the Merton model, as none of Kou’s parameters need to be pre-determined
in order to obtain the other parameters.

3.3 Cumulant Derivative Matching at t̂

The moment matching methodology described in Section 3.2 works reasonably well for some
parameter sets (see Section 4.3), but equally it does not work as well as we would ideally
like for other parameter sets. This leads us to consider an alternative, but broadly similar,
methodology. Moment matching is essentially equivalent to matching the derivatives of the
cumulant functions of the two different models, evaluated at zero (see Section 2.1). Observ-
ing the form of equation (3.1), we see that the cumulant function k(t) is being evaluated at
t̂ (i.e. the root of k

′
(t) = y). This suggests that an alternative methodology to determine

the parameters of the Merton and Kou distributions would be to match the second, third
and fourth derivatives of the cumulant functions, evaluating the resulting equations at t̂.
We now describe this methodology is more detail. We refer to this methodology as the
cumulant derivative matching (CDM) method at t̂.

3.3.1 Derivatives of the Cumulant Functions

Denote by χ(u) the log of the moment generating function (i.e. the cumulant generating
function), for u ∈ R. We denote the up and down components of the third and fourth
derivatives of the cumulant generating function by χ

′′′

up(u), χ
′′′

down(u), χ
′′′′

up(u) and χ
′′′′

down(u).
Specifically, for the CGMY model, we denote the cumulants of the third and fourth deriva-
tives by: χ

′′′

CGMY,up(u), χ
′′′

CGMY,down(u), χ
′′′′

CGMY,up(u) and χ
′′′′

CGMY,down(u).
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The CGMY Model

For the CGMY model, the log of the mean-corrected CGMY moment generating function
is:

χCGMY(u) =
1

2
σ2CGMYu

2 + CupΓ(−Yup)
[
(M − u)Yup −MYup

]

+ CdownΓ(−Ydown)
[
(G+ u)Ydown −GYdown

]

−
1

2
σ2CGMYu− uCupΓ(−Yup)

[
(M − 1)Yup −MYup

]

− uCdownΓ(−Ydown)
[
(G+ 1)Ydown −GYdown

]
,

where σCGMY is the volatility of the Brownian component. The derivatives are:

χ
′

CGMY(u) = σ
2
CGMYu+ Cup(M − u)

Yup−1Γ(1− Yup)− Cdown(G+ u)
Ydown−1Γ(1− Ydown)

−
1

2
σ2CGMY − CupΓ(−Yup)

[
(M − 1)Yup −MYup

]

− CdownΓ(−Ydown)
[
(G+ 1)Ydown −GYdown

]
,

χ
′′

CGMY(u)− (χ
′

CGMY(u))
2 = σ2CGMY + Cup(M − u)

Yup−2Γ(2− Yup)

+ Cdown(G+ u)
Ydown−2Γ(2− Ydown),

χ
′′′

CGMY,up(u) = Cup(M − u)
Yup−3Γ(3− Yup),

|χ
′′′

CGMY,down(u)| = Cdown(G+ u)
Ydown−3Γ(3− Ydown),

χ
′′′′

CGMY,up(u) = Cup(M − u)
Yup−4Γ(4− Yup),

χ
′′′′

CGMY,down(u) = Cdown(G+ u)
Ydown−4Γ(4− Ydown).

Note that if u =M or u = −G, in general, the derivative terms become infinite, depending
on the values of Yup and Ydown. If u > M or u < −G, both the moment generating function
and the derivatives become undefined.

The Merton Model

For the Merton (1976) model with two Poisson processes, the log of the moment generating
function is:

χMert(u) =
1

2
σ2Mertu

2 + λ1

(

exp

(

uμ1 +
1

2
δ21u

2

)

− 1

)

+ λ2

(

exp

(

uμ2 +
1

2
δ22u

2

)

− 1

)

−
1

2
σ2Mertu− uλ1

(

exp

(

μ1 +
1

2
δ21

)

− 1

)

− uλ2

(

exp

(

μ2 +
1

2
δ22

)

− 1

)

.

The derivatives are:
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χ
′

Mert(u) = σ2Mertu+ λ1μ̂1(u)A1(u)− λ1(A1(1)− 1)

−
1

2
σ2Mert + λ2μ̂2(u)A2(u)− λ2(A2(1)− 1),

χ
′′

Mert(u)− (χ
′

Mert(u))
2 = σ2Mert + λ1(δ

2
1 + μ̂1(u)

2)A1(u) + λ2(δ
2
2 + μ̂2(u)

2)A2(u),

χ
′′′

Mert,up(u) = λ1(3δ
2
1μ̂1(u) + μ̂1(u)

3)A1(u),

χ
′′′

Mert,down(u) = λ2(3δ
2
2μ̂2(u) + μ̂2(u)
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χ
′′′′
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1μ̂1(u)

2 + μ̂1(u)
4)A1(u),

χ
′′′′
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4
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2
2μ̂2(u)

2 + μ̂2(u)
4)A2(u),

where μ̂1(u) = μ1 + δ
2
1u, μ̂2(u) = μ2 + δ

2
2u;

and A1(u) = exp(μ1u+
1
2δ
2
1u
2) and A2(u) = exp(μ2u+

1
2δ
2
2u
2).

The Kou Model

For the Kou (2002) model, the log of the moment generating function is:

χKou(u) =
1

2
σ2Kouu

2 + uλ

(
p

η1 − u
−
1− p
η2 + u

)

−
1

2
σ2Kouu− uλ

(
p

η1 − 1
−
1− p
η2 + 1

)

.

The derivatives are:

χ
′

Kou(u) = σ2Kouu+ λ

(
p

η1 − u
−
1− p
η2 + u

)

+ uλ

(
p

(η1 − u)2
+
1− p
(η2 + u)2

)

−
1

2
σ2Kou − λ

(
p

η1 − 1
−
1− p
η2 + 1

)

,

χ
′′

Kou(u)− (χ
′

Kou(u))
2 = σ2Kou + 2λ

(
p

(η1 − u)2
+
1− p
(η2 + u)2

)

+ 2uλ

(
p

(η1 − u)3
−
1− p
(η2 + u)3

)

,

χ
′′′

Kou,up(u) =
6λpη1
(η1 − u)4

,

χ
′′′

Kou,down(u) = −
6λ(1− p)η2
(η2 + u)4

,

χ
′′′′

Kou,up(u) =
24λpη1
(η1 − u)5

,

χ
′′′′

Kou,down(u) =
24λ(1− p)η2
(η2 + u)5

.

3.3.2 Cumulative Derivative Matching at t̂

For the rest of the analysis in this section, we will assume that the cumulants evaluated at
t̂, χ

′′′

up(t̂), χ
′′′

down(t̂), χ
′′′′

up(t̂) and χ
′′′′

down(t̂), refer to those of the distribution we are approxi-
mating. The cumulants of the Merton and Kou models will be given explicitly.
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The Merton Model

In a similar manner as seen in Section 3.2.1, set δ1 = α1μ̂1(t̂) and δ2 = α2μ̂2(t̂), where α1
and α2 are non-negative constants. As in Section 3.2.1, we set α1 = α2 = 0.25.

Then as before, by dividing χ
′′′′

up(t̂) by χ
′′′

up(t̂) and dividing χ
′′′′

down(t̂) by |χ
′′′

down(t̂)|, the cu-
mulants are now a function of only one variable:

χ
′′′′

up(t̂)

χ
′′′
up(t̂)

= μ̂1(t̂)

[
3α41 + 6α

2
1 + 1

3α21 + 1

]

,
χ
′′′′

down(t̂)

|χ′′′down(t̂)|
= |μ̂2(t̂)|

[
3α42 + 6α

2
2 + 1

3α22 + 1

]

.

This gives us values of μ̂1(t̂) and |μ̂2(t̂)|. We set μ̂2(t̂) = −|μ̂2(t̂)|. Note that μ̂1(t̂) is
certainly positive and μ̂2(t̂) is certainly negative. By using the relations: δ1 = α1μ̂1(t̂),
δ2 = α1μ̂2(t̂), μ̂1(t̂) = μ1+δ

2
1 t̂ and μ̂2(t̂) = μ2+δ

2
2 t̂, we can obtain the values of δ1, δ2, μ1, μ2.

By matching the values of χ
′′′

up and χ
′′′

down with the up and down components of the third

derivative of the cumulant function for the Merton model, evaluated at t̂, we can obtain
the values of λ1 and λ2. Finally, by matching the value of χ

′′

Mert(u) − (χ
′

Mert(u))
2 and the

value of χ
′′
(u)− (χ

′
(u))2, both evaluated at u = t̂, we will obtain σ2Mert.

The Kou Model

In a similar manner as seen in Section 3.2.2, by dividing χ
′′′

up by χ
′′′′

up and dividing χ
′′′

down by

χ
′′′′

down, the cumulants are now a function of only one variable:

χ
′′′

up

χ
′′′′
up

=
(η1 − t̂)
4

,
χ
′′′

down

χ
′′′′

down

= −
(η2 + t̂)

4
.

Rearranging these equations gives us values of η1 and η2. Then by dividing χ
′′′

up by χ
′′′

down, we

obtain an expression in terms of the unknown p, and the known η1, η2 and t̂. Rearranging
this expression enables us to solve for p. Then by matching values of χ

′′′

up (or χ
′′′

down) with
the up (or down) components of the third derivative of the cumulant function for the Kou
model, evaluated at t̂, we can obtain the value of λ. Finally, by matching the value of
χ
′′

Kou(u) − (χ
′

Kou(u))
2 and the value of χ

′′
(u) − (χ

′
(u))2, both evaluated at u = t̂, we will

obtain σ2Kou.

3.4 Review of the Base Distributions

There are a number of reasons why we might expect accurate results from using the Kou
model as the base distribution for calculating probabilities under a CGMY model. The
Kou model “resembles” the CGMY distribution for the following reasons: the generalised
CGMY model we’re considering contains up and down jump components, and the Kou
model naturally splits into up and down jump components. If we set Yup = Ydown = −1 in
the CGMY model, we get the Kou model as a special case. Additionally, the Lévy measure
of the CGMY model monotonically declines as one moves away from the origin (in either
direction). This is also true of the Lévy measure of the Kou model. It is not possible to
have this latter feature in the Merton model with two compound Poisson processes.
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However, the Merton pdf and cdf functions are very simple. The Kou pdf and cdf functions
are much more complex and are subject to numerical instability for certain input values.
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4 Test Results - Binary Cash or
Nothing

Throughout this section, we will review and compare the Binary Cash or Nothing (BCON)
option prices under a generalised CGMY model, with the three different Saddlepoint base
distributions (Gaussian, Merton and Kou). We’ll use Matlab to produce all the results.
For the purposes of comparison, we need “exact” values of the option prices. We use the
following formula from Bakshi and Madan (2000):

P(ST > K) =
1

2
+
1

π

∫ ∞

0
Re

(
exp(−iu log(K))ψT (u)

iu

)

du,

where ψT (u) denotes the characteristic function of the model we are interested in. The
BCON option price is then obtained by multiplying the probability P(ST > K) by the
relevant discount factor.

In order to compute this integral, we use Matlab’s built-in “quadl” function which uses
a recursive adaptive Lobatto quadrature. To use this function, we first need to compute
an appropriate finite upper limit for the integral. The term exp (−iu log (K)) oscillates
between -1 and 1, and the real part of the term ψT (u)

iu decays monotonically and rapidly
(moreover, it decays exponentially, except when Yup = Ydown = 0) as u→∞. Consequently,
we choose the upper limit of the integral by numerically solving for the smallest value of u

such that Re
(
ψT (u)
iu

)
is less than some small tolerance. In all our numerical examples, we

set this small tolerance equal to 10−11. This provides us with an upper limit for the integral.

Matlab’s quadl function then performs the integration by recursively sub-dividing the re-
gion of integration until the integral is correct to a tolerance of 10−11. The results from
the integral method will not literally be exact due to the specification of an upper limit,
but it is clear that they will be extremely close to the true values. We can then compare
the accuracy of our Saddlepoint based approximations against these values. Of course, the
Saddlepoint methods will be significantly faster than computing the integral numerically.

All of the following test results have been carried out using the moment matching method
described in Section 3.2 and the CDM method described in Section 3.3.

4.1 CGMY Parameters

We calculate BCON option prices using 15 sets of parameters as shown in the following ta-
ble. There are at least two sets of parameters for each of the three different categories that
CGMY processes fall into (finite activity; infinite activity, finite variation; and infinite ac-
tivity, infinite variation). A wide range of parameters has been chosen so that we can obtain
a more complete idea about how the different bases perform under varying circumstances.
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Type Name Cup G M Yup Cdown Ydown

infinite activity, finite variation

set1 0.4 4.14 12.3 0.21 0.4 0.21

set2 0.874 4.667 11.876 0.51 0.925 0.58

set3 0.874 4.667 11.876 0.51 0.874 0.51

set4 0.3 4.6 7.8 0.9 0.25 0.88

set5 2 5 10 0.2 2 0.2

set6 2 5 10 0.5 2 0.5

set7 1.8 4.5 6.7 0.95 2 0.95

set8 0.4 4.14 12.3 0.21 1.86 0.23

set9 0.76 4.6 9.5 0.16 1.08 0.18

infinite activity, infinite variation
set10 0.4 4.14 12.3 1.5 0.4 1.5

set11 2 5 10 1.5 2 1.5

finite activity, finite variation

set12 0.4 5 10 -0.5 0.4 -0.5

set13 2 5 10 -0.5 2 -0.5

set14 2 5 8 -1.2 2 -1.2

set15 2 5 10 -1.5 2 -1.5

CGMY Parameter Sets Used In Option Pricing

We regard values of Cup, Cdown > 1.7 as being relatively high values, and consequently,
refer to this as high C parameter sets. Furthermore, we regard values of Cup, Cdown < 0.3
and values of Yup, Ydown < 0.25 as being relatively low values, and refer to these as low C

parameter sets and low Y parameter sets respectively.

4.1.1 QQ Plots

For each of the CGMY parameter sets above, QQ-plots between the Merton and Kou dis-
tributions have been carried out for St0 = 1,K = 1, r = 0.05, q = 0.02, σCGMY = 0.2 and
across maturities T = 2, 1, 0.5 (not all plots reported). A QQ plot is a graphical method
for comparing two probability distributions by plotting their quantiles against each other.
If the data fall on a 45 degree line, the data have come from populations with the same
distribution. Figures 1 to 3 in Appendix A contain samples of these QQ plots for T = 1, for
two parameter sets from each category of Yup, Ydown. These plots have been obtained after
applying the moment matching method described in Section 3.2 to attain the appropriate
parameters for the Merton and Kou distributions.

Overall, there is a relatively good fit between both distributions. This is especially so
for a larger maturity, indicating that the moment matching technique is reasonable. How-
ever, for smaller maturities (T = 0.5), the fit between both models isn’t as good. There
is however a clear indication across all maturities that for parameter sets 10 and 11, the
Merton and Kou bases are not linearly correlated - this can be seen in figure 2 for plots (a)
and (b). We therefore might expect very different option prices for these sets of parameters
from using the two different base distributions.
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4.2 CGMY Results Without a Brownian Component

The first set of results are calculated for BCON call options under the CGMY model with
no Brownian Motion component, σCGMY = 0 (i.e. a pure jump model). BCON option
prices are calculated for each of the 15 parameter sets for maturity 1 year; initial stock
price St0 = 100; risk-free rate r = 0.05; dividend yield q = 0.02; and strike K takes values
from 60 to 140, increasing in steps of 10. Table 1 in Appendix B displays the option prices
obtained. We will refer to ‘out of the money’ options as OTM options, ‘in the money’
options as ITM options and ‘at the money’ options as ATM options.

There are some values that the Kou model couldn’t compute - for parameter sets 14 and
15, due to the Kou parameters obtained from using the moment matching method (see
Appendix D for more details). Generally, the values from both the Merton and Kou bases
are not as good as those obtained from the Gaussian base. However for some parameters,
none of the bases have performed particularly well - these are mainly for parameter sets
where Yup, Ydown < 0.

4.3 CGMY Results With a Brownian Component - I

The problem we faced above where neither the Merton nor Kou models performed well may
be due to using jump diffusion models to approximate a pure jump model. Dropping the
diffusion component from the Merton model causes numerical implementation problems
as the Merton cdf and pdf uses the diffusion component in the denominator. In order to
investigate this further, we can introduce a Brownian component into the CGMY model.

We computed BCON option prices exactly as in Section 4.2, but this time, σCGMY = 0.2.
The results can be seen in the following tables in Appendix B: Table 2 for T = 1, table 3
for T = 2, table 4 for T = 0.5. We note that in table 3, the Saddlepoint approximation has
not been able to compute BCON option prices using the Kou model, for set 11. This is due
to the numerical instability issues explained in Appendix D. We will refer to the results of
the original moment matching method for the Merton and Kou distributions as Merton-0
and Kou-0 respectively.

4.3.1 Analysis of Results

Comparing these new results against the case where the volatility σCGMY was zero, we
can see that now both the Merton and Kou base distributions produce better results. We
should bear in mind that when comparing how the different bases performed in relation
to one another, it is more useful to gain an impression of how each base is performing in
general, as random outliers will be difficult to account for.

Best Results From Saddlepoint Approximation

There are certain parameter sets for which the different bases produce excellent results
(i.e. where the results from the Saddlepoint approximation and the numerical integral
match to 4 to 5 significant figures). Across all maturities, the Merton and Gaussian bases
are performing well where 1 < Yup, Ydown < 2 and for most of the high C parameter

24



4. TEST RESULTS - BINARY CASH OR NOTHING

sets where 0 < Yup, Ydown < 1. Additionally, for larger maturities (T = 2), the Merton
and Gaussian bases also produce very good results for more of the parameter sets where
0 < Yup, Ydown < 1. The fact that the Gaussian base performs well where 1 < Yup, Ydown < 2
may be due to the following reason: If we examine the form of the characteristic function
for the CGMY model in the limit that Yup → 2, Ydown → 2,M → 0 and G→ 0, we see that
it behaves like the characteristic function of Brownian motion. Since parameter sets 10 and
11 (where Yup, Ydown < 2) both use a relatively large value of 1.5, we might expect the
Gaussian base to perform well here. Furthermore, a reason for the Merton base performing
well might be that conditional on the number of jumps occuring, the Merton model follows
a Gaussian distribution. Furthermore, for carefully chosen parameters (i.e. jump intensity
rates tending to zero), the Merton model reduces to a Brownian motion. For maturities
of 1 and 2 years, the Kou model performs very well for a few OTM options, and performs
reasonably well across all maturities where Yup, Ydown < 0 - better so than the other bases.
This is almost certainly occurring because when Yup, Ydown < 0, the CGMY model is a
compound Poisson process, as is the Kou model. In particular, if Yup = Ydown = −1, the
CGMY model is the difference between two independent compound Poisson processes with
exponentially distributed jumps - the same as the Kou model. The results from the Merton
and Gaussian bases look promising. However, it is necessary to see how each of the base
distributions perform overall.

Worst Results From Saddlepoint Approximation

In spite of improvements in the accuracy of the results for a non-zero volatility (σCGMY =
0.2) in the CGMY model, there are still some parameter sets for which some of the Saddle-
point bases are struggling to produce very good results. For example, the Gaussian base
distribution, and to a lesser extent, the Merton base distribution, don’t produce great values
for Yup, Ydown < 0, but, as mentioned above, this is where the Kou base performs reasonably
well. The Kou model experiences numerical instability problems in it’s complex distribution
function when calculating BCON option prices for 1 < Yup, Ydown < 2, and also struggles to
produce reliable figures for parameter sets 6 and 7 (i.e. most of the high C parameter sets
where 0 < Yup, Ydown < 1). But again, for these parameter sets, the Merton and Gaussian
base distributions produce excellent results. The numerical instability problems are caused
due to the large values of the Kou parameters obtained through the moment matching
method, usually when matching to CGMY parameter sets where 1 < Yup, Ydown < 2. For
parameter set 7, Yup, Ydown = 0.95, which is very close to 1, and therefore this parameter
set is likely to behave like those parameter sets where 1 < Yup, Ydown < 2. Moreover, the
reason the Kou model struggles to produce good values for high C parameter sets, is pos-
sibly due to the parameters Cup, Cdown controlling the “height” of the Lévy density and
hence the overall intensity of jumps - therefore it provides control over the kurtosis of the
distribution. The above findings suggest that a combination of the bases would produce
very good results. The differences in how well the Merton and Kou bases perform where
1 < Yup, Ydown < 2, reflects the information we deduced from the QQ plots: for parameter
sets 10 and 11 (i.e. where 1 < Yup, Ydown < 2), we expected the Merton and Kou bases to
produce different values as the QQ plots for these sets did not line up in a linear fashion.
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Overall Analysis of the Base Distributions

It would make sense to remove parameter sets 7, 10 and 11 (1 < Yup, Ydown < 2) from
the analysis when using a Kou base distribution, as the results here are completely wrong.
Therefore, all the future analysis assumes that we will not be considering the parameter
sets for which using the Kou model results in numerical instabilities.

We will now consider how each of the Saddlepoint bases perform overall. All three bases
seem to be performing differently depending on the maturity being considered, so we will
conduct our analysis accordingly. In order to evaluate the overall performance of each of the
different base distributions, we will consider those BCON option prices where the absolute
difference between option prices obtained from the Saddlepoint method and those obtained
by the numerical integration method is less than 0.01, as a fairly good result. As BCON
values are essentially probabilities, this implies that obtaining fairly good results from a
Saddlepoint method matches to the numerical integration value to 2 significant figures.

Using the Merton base to compute BCON option prices is more effective as we increase the
maturity. For a maturity of one year, the Saddlepoint method produces less reliable values
for only a few strikes. However, the largest difference between the Merton Saddlepoint
results and the numerical integral results being 0.024918 indicates that overall, a Merton
base is very reliable for this maturity. The results are even more promising for a maturity
of 2 years, where the largest difference is 0.010383, for an ITM option where Yup, Ydown < 0.
The Merton base performs less well for a maturity of half a year - but we note that this is
where the Kou base does well.

The Kou base exhibits the opposite trends to that of a Merton base: the shorter the
maturity, the better the Kou model performs. For T = 0.5, there are still some results for
ITM options for which the Kou model doesn’t produce good results. However overall, this
base is performing reasonably well as the maximum difference between the option prices
computed from this base and the “exact” prices computed using the numerical integral is
0.02087.

The Gaussian base performs reasonably well all round, especially for a larger maturity.
This is as expected since the Central Limit Theorem suggests that the distribution of the
CGMY process at time T tends to a Gaussian distribution as T becomes larger. As previ-
ously mentioned, the Gaussian base is less accurate where Yup, Ydown < 0, but again, the
Kou model performs well here.

Summary

We can now use this information to see which base produced the best results overall. On
the whole, each of the base distributions seem to be performing quite well. The Merton and
Gaussian models produce better results for an increasing maturity while the Kou model
produces better results for a shortening maturity - it outperforms both the Merton and
Gaussian bases across all maturities, excluding results for which the Kou model produces
erroneous results (parameter sets where 1 < Yup, Ydown < 2, set 7 across all maturities, and
for all high C parameter sets where 0 < Yup, Ydown < 1 for the larger maturity of 2 years).
But for all these exclusions, the Merton base produces excellent results. Therefore, mixing
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the Merton and Kou bases in the appropriate way, would produce a base that outperforms
the commonly used Gaussian base distribution for Saddlepoint approximations.

4.4 CGMY Results With a Brownian Component - II

We now repeat the tests we performed in Section 4.3 (with σCGMY = 0.2), but this time, we
use the cumulative derivative matching at t̂ (CDM) method (i.e. the methodology of ob-
taining Merton and Kou parameters described in Section 3.3, which matches the derivatives
of the cumulant function at t̂). We use the same option parameter sets: for maturities: 2, 1,
0.5 years; initial stock price St0 = 100; risk-free rate r = 0.05; dividend yield q = 0.02; strike
K takes values from 60 to 140, increasing in steps of 10; and CGMY volatility σCGMY = 0.2.
The results can be seen in the following tables in Appendix B: Table 2 for T = 1, table 3
for T = 2, table 4 for T = 0.5. We note that in table 3, the Saddlepoint approximation
has not been able to compute BCON option prices using the Kou model, for set 11. This
is due to the numerical instability issues explained in Appendix D.

We will refer to the results of the CDM method for the Merton and Kou distributions
as Merton-t̂ and Kou-t̂ respectively.

4.4.1 Comparison Between Parameter Attaining Methods

We will now explore for which strikes, and for which parameter sets the CDM method
has brought about improvements in the option prices calculated using the Saddlepoint
approximation technique. We’ll investigate those values for which there is a large enough
difference between the option prices calculated using the original moment matching method,
and the CDM method. It is necessary to define what qualifies as a “large enough difference”
between the results obtained from using both parameter attaining methods. We’ll consider
those results for which the difference is greater than 0.005 as a large enough difference. This
is a tight restriction, but it will enable us to determine whether the CDM method really
improves upon the original moment matching method. It would be preferable to use mainly
one of the methods (i.e. moment matching method or CDM method) for the bulk of the
parameter sets and range of strikes rather than single out certain strikes for the different
parameter sets where each method did well. Therefore, we shall conduct our analysis based
on general results, where there is an obvious pattern forming.

Two-Year Maturity

For a maturity of 2 years, there were only three differences between both the methods
for the Kou model. The Merton model experienced differences for ITM options where
Yup, Ydown < 0 and for parameter sets 1, 3 and 9 where 0 < Yup, Ydown < 1. The CDM
method produced better results for most of these differences, except for deep ITM options.

One-Year Maturity

For a maturity of 1 year, the Kou model only experiences a few differences between the
original moment matching method and the CDM method. These were for ITM options for
parameter set 1, where the CDM method produced better results. In the Merton model, the
differences between the original moment matching method and the CDM method mirrored
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the findings for T = 2. However, for T = 1, the original moment matching method produced
better results using a Merton base distribution for parameter sets where Yup, Ydown < 0,
indicating that for a smaller maturities the CDM method has not brought about major
improvements compared to the original moment matching method.

Half-Year Maturity

The results for the CDM method were varied for the smallest maturity of half a year. The
Kou model experienced large differences between the results from the two methods for ITM
options for all parameter sets where 0 < Yup, Ydown < 1, excluding the high C parameter
sets, and for ITM options for parameter set 12. Except for parameter set 12, the majority
of these results produced more accurate BCON option prices using the CDM method. For
the Merton model, there were mainly differences for ITM options where Yup, Ydown < 0, and
for ITM options for nearly all the parameter sets where 0 < Yup, Ydown < 1. For the Merton
model, using the moment matching method produced better results for ITM options for
parameter sets 3, 4, 9, 13 and 14.

Summary

Overall, these findings suggest that for the Merton model, the original moment matching
method produces better results for some ITM BCON options, and overall for the Kou
model, the CDM method produces better results.

4.4.2 Analysis of Results

For all maturities, the CDM method for the Merton and Kou base distributions produce
the same trends as the original moment matching method for each of the maturities: The
Merton model produces more accurate figures for increasing maturities, and conversely,
using a Kou model produces more accurate figures for decreasing maturities. Furthermore,
when comparing the overall performance between the three different base distributions us-
ing the CDMmethod, the results are similar to those obtained using for the original moment
matching method.

Overall, the CDM method has not brought about major improvements in the accuracy
of BCON option prices compared to the moment matching method. We will investigate in
Section 5 whether the CDM method is able to give better results compared to the moment
matching method when used to calculate vanilla option prices.

4.5 Higher-Order Approximation

We will now conduct tests which use the higher-order Saddlepoint formulae: equation (3.2)
for the Merton and Kou base distributions, and equation (3.3) for the Gaussian base dis-
tribution.

The same tests that were run for BCON option pricing using the lower-order Saddlepoint
approximation have been run again, but now we only consider using the original moment
matching method as the CDM method didn’t prove to be a great improvement. The results
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from the higher-order approximation can be seen in the following tables in Appendix B:
Table 2 for T = 1, table 3 for T = 2, table 4 for T = 0.5.

4.5.1 Analysis of Results

We will now analyse the results for which the higher-order approximation produced bet-
ter results than those obtained using the lower-order approximation. It will be useful to
investigate for which parameter sets and strikes the higher-order results differed from the
lower-order results by a large difference. This will enable us to identify where the higher-
order approximation is doing particularly well. Again, as seen in the comparison between
the original moment matching method and CDM method, we will consider a large difference
to be 0.005.

Two-Year Maturity

For T = 2, the higher-order approximation for the Merton base distribution outperforms
the lower-order approximation mostly for ITM options where 0 < Yup, Ydown < 1. For
the Kou and Gaussian models, the higher-order approximation does well for some of the
parameter sets where 0 < Yup, Ydown < 1. However, if we just focus on those results where
the BCON option prices obtained from implementing the lower-order formula differ from
the prices obtained from implementing the higher-order formula by more than 0.005, we
find that none of these include the results for which the higher-order base performed very
well.

One-Year Maturity

For T = 1, the higher-order approximation using the Merton base distribution does well
across the range of strikes for most parameter sets where Yup, Ydown > 0. The results from
the Kou base distribution outperform the results from the lower-order approximation for
deep ITM options where Yup, Ydown < 1. The Gaussian base distribution outperforms the
lower-order approximation across all parameters sets. However, there are no parameter sets
for which these results differ from the lower-order approximation by more than 0.005. This
indicates that the higher-order approximation hasn’t yet brought about a major improve-
ments in the results.

Half-Year Maturity

Finally, for T = 0.5, using the Merton base distribution produces results that outperform
the results from the lower-order approximation across the range of strikes for most pa-
rameter sets where Yup, Ydown > 0. The higher-order approximation for the Kou model
hasn’t performed as well as for the larger maturites: there are only a few very good results
produced using the higher-order approximation - none of which form a logical pattern.
Finally, for the Gaussian base distribution, the higher-order Saddlepoint approximation
outperforms the lower-order approximation across all parameters sets. However, for the
Merton and Kou models, the results from the higher-order approximation do not differ
from the original results by a large amount, and for the Gaussian model, the higher-order
approximation only makes a definitive impact on parameter sets 1 and 12.
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Summary

We find that although the higher-order approximation performs well, it doesn’t outperform
the lower-order approximation by a large amount for any of the three base distributions.
This indicates that the extra computational cost involved in calculating the higher-order
formula isn’t weighing out the benefit of a slightly more accurate BCON option price. This
may be because our findings in this section display that using the three base distributions
would already provide accurate results. We will investigate in Section 5 whether the higher-
order approximation is able to give better results for vanilla options than the lower-order
approximation.
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5 Test Results - Vanilla Options

In the previous section, we considered the prices of BCON options. In this section, we
will consider the prices of vanilla (standard European) options under a generalised CGMY
model using the three different Saddlepoint base distributions. The exact option prices
that will be used to compare the Saddlepoint results against in this section will be Carr
and Madan’s FFT formula, details of which can be found in Carr and Madan (1999). We
will also calculate option prices using the numerical integral that was introduced in Section
4 - implemented into a “Black-Scholes-style” formula (see Section 5.1). Both techniques
of obtaining the Merton and Kou parameters (the original moment matching and CDM
methods) described in Section 3 will be applied.

5.1 Saddlepoint Approximations Under the Share Measure

In order to produce vanilla call option prices, we’ll need to compute two probabilities. This
results in a “Black-Scholes-style” option pricing formula. The price of a vanilla call option
at time t0 is:

Ct0 = e−r(T−t0)EQ[(ST −K)1{ST>K}]

= e−r(T−t0)EQ[ST1{ST>K}]− e
−r(T−t0)EQ[K1{ST>K}]

= e−q(T−t0)PR[ST > K]−Ke−r(T−t0)PQ[ST > K].

We have calculated the second probability PQ[ST > K] in the last equation above, in Sec-
tion 4. It is the price of a BCON option, multiplied by a deterministic factor, K. However,
we still need to calculate the first probability, PR[ST > K]. This is the probability that ST
exceeds K under the share measure R, where the stock is taken as the numeraire.

Rogers and Zane (1999) show that the cumulant function kR(z) under the share measure
R is related to the cumulant function under the risk-neutral pricing measure Q as follows:

kR(z) = kQ(z + 1)− kQ(1).

By replacing the cumulant function under the risk-neutral pricing measure kQ(z) with
kR(z), in the probabilities calculated in section 4, we are able to compute PR[ST > K] and
hence vanilla option prices under the CGMY model using the Saddlepoint technique.

5.2 Vanilla Option Pricing Results

We calculated option prices for the same option parameters seen in Section 4: for maturities:
2, 1, 0.5 years; initial stock price St0 = 100; risk-free rate r = 0.05; dividend yield q = 0.02;
strike K takes values from 60 to 140, increasing in steps of 10; and CGMY volatility
σCGMY = 0.2. The results can be seen in the following tables in Appendix B: Table 5 for
T = 1, table 6 for T = 2, table 7 for T = 0.5. We note that in table 6, the Saddlepoint
approximation has not been able to compute vanilla option prices using the Kou model, for
parameter set 11. This is due to the numerical instability issues explained in Appendix D.
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5.2.1 Comparison Between Parameter Attaining Methods

It seems that the CDM method is producing better results than the original moment match-
ing method, so it’s worth comparing the results between them to see if we can eliminate the
use of the original method of attaining Merton and Kou parameter values for vanilla option
pricing purposes. It is necessary to define what qualifies as a “large enough difference” be-
tween the results for both moment matching techniques, in order to isolate those values to
see if the CDM method is performing better or not, in comparison to the original moment
matching method. As the FFT method has calculated a few option prices with values less
than 1 (for deep OTM options with a very small maturity - most of them are for parameter
sets where Yup, Ydown < 0), for these options, we’ll consider a large difference to be greater
than 0.005, and for all other cases, we’ll consider a value of 0.05 to be a large difference.
(This implies we’re investigating the performance of the CDM method specifically for those
results which do not match to 2-3 significant figures to results obtained using the original
moment matching method). Again, as the three bases produce different results for varying
maturities we’ll consider the results for each maturity separately.

Two-Year Maturity

At T = 2, the Kou model experiences most of it’s differences for half of the parameter sets
where 0 < Yup, Ydown < 1. Excluding parameter set 4, the CDM method has produced the
more accurate results. For the Merton model, the majority of the large differences fall within
the parameter sets where Yup, Ydown < 0, and for OTM options where 0 < Yup, Ydown < 1.
Nearly all of these parameter sets produced better results using the CDM method.

One-Year Maturity

For a maturity of 1 year, the Kou model experienced differences in the option prices between
the two methods (original moment matching and CDM methods) mostly for OTM options,
where 0 < Yup, Ydown < 1 and for parameter sets 13 and 15. For each of these option
prices, again, the CDM method produced better results. These results include the high
C parameter sets where 0 < Yup, Ydown < 1. We emphasize that in the BCON case, this
has usually been the area for which the Kou model doesn’t produce good results, implying
that the CDM method has brought about a major improvement. For the Merton base
distribution, most of the largest differences occur for the parameter sets where Yup, Ydown <
1, excluding set 7. (Therefore, there isn’t a large difference in the results for where the
Merton model performed exceptionally well in pricing BCON options: for parameter sets
where 1 < Yup, Ydown < 2). Again, the option prices produced using the CDM method
provided the better results overall. So for pricing vanilla options with a maturity of one
year, using the CDM method certainly provides an improvement in the results.

Half-Year Maturity

Finally, for a maturity of half a year, (removing the erroneous values from sets 7 and
10 from the Kou model), there are differences for OTM options where 0 < Yup, Ydown < 1,
most of which produced more accurate option prices using the CDM method. Furthermore,
for the Merton model, there are differences for all sets (excluding parameter set 9) where
Yup, Ydown < 1. Except for a few deep ITM and deep OTM options, most of these parameter
sets produced better results using the CDM method. There were also large differences for
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the Merton and Kou models for all the deep OTM options where the FFT option price
was less than 1. The results for these were mixed, and there isn’t a logical pattern forming
for which option prices were in favour of the CDM method. However, there are only 10 of
these options.

Summary

We imposed a tight restriction on what we considered a large difference, and although there
were many different combinations, the above analysis indicates that the CDM method has
brought about an improvement in using the Saddlepoint approximation to price vanilla
options. Therefore, for the rest of the analysis, we’ll only consider values obtained from
applying the CDM method.

5.2.2 Analysis of Results

Best Results From Saddlepoint Approximation

As seen in the BCON case, there are certain parameter sets for which the different base dis-
tributions produce excellent results (where the results from the Saddlepoint approximation
and the numerical integration match to 3 or 4 significant figures). There are similarities
between the results for the BCON option prices and the vanilla option prices regarding for
which set of parameters each of the three base distributions performs particularly well. (i.e.
Across all maturities, the Merton and Gaussian bases perform well where 1 < Yup, Ydown < 2
and for most of the high C parameter sets where 0 < Yup, Ydown < 1. For larger maturities
these two base distributions also produce very good results for more of the parameter sets
where 0 < Yup, Ydown < 1; the Kou base distribution produces the best results for the pa-
rameter sets where Yup, Ydown < 0). Additionally, for a maturity of 2 years, the Kou base
distribution performs well for deep ITM and deep OTM options for parameter sets 1, 8
and 9 (low Y parameter sets where 0 < Yup, Ydown < 1).The analysis conducted in Section
4 into why certain base distributions perform well for certain parameter sets still holds
for the vanilla option pricing case. Except for set 11 for T = 0.5 where none of the base
distributions produce good results, using the Saddlepoint approximation produces trends
that mirror the trends observed for the BCON case.

Worst Results From Saddlepoint Approximation

Again, as seen above, there are similarities between the results for the BCON option prices
and the vanilla option prices regarding for which set of parameters each of the three base
distributions doesn’t perform so well. (i.e. For the Kou model, this is for parameter sets
where 1 < Yup, Ydown < 2, and for high C parameter sets where 0 < Yup, Ydown < 1; the
Gaussian model, and to a lesser extent the Merton model, struggle to produce very good
values for some of the parameter sets where Yup, Ydown < 0). Again, the analysis conducted
in Section 4 into why certain base distributions do not perform so well for certain parameter
sets still holds for the vanilla option pricing case.

Although the Kou model doesn’t produce exceptional results for various parameter sets, it
didn’t for the BCON results either, but overall it still performed well and in particular, for
smaller maturities, it outperformed the other two base distributions.
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Overall Analysis of the Base Distributions

In order to evaluate the overall performance of the Saddlepoint approximation using the
different base distributions to calculate vanilla option prices, we need to quantify what we
consider a large enough difference between the prices obtained from using the Saddlepoint
method, and the option prices computed using the FFT method. For BCON results, we
regarded a difference of less than 0.01 to be fairly good (i.e. 2 significant figures), as we were
investigating errors for probabilities. Therefore, in order to evaluate the performance of the
Saddlepoint method to calculate vanilla option prices, for FFT values greater than 1, we’ll
regard a difference of less than 0.2 as a fairly good result, and for those FFT values which
are less than 1 (i.e. Deep OTM options for a small maturity - most of them are for param-
eter sets where Yup, Ydown < 0), we’ll regard a difference between the Saddlepoint results
and the FFT results of less than 0.02 as a fairly good result. Additionally, as mentioned
in the analysis conducted for the BCON case, it is only useful to consider the performance
of parameter sets and varying strikes as a whole to determine how a base is performing, as
isolating single outliers is inefficient.

When T = 2, both the Merton and Gaussian base distributions have proved they are
performing well, except for ITM options for CGMY parameter set 11. It was mentioned
earlier that none of the base distributions were performing particularly well for this pa-
rameter set. Again, disregarding the sets for which the Kou model produces completely
unreliable results, the Kou model’s performance is not bad overall for a larger maturity,
which reflects what was inferred from the BCON option analysis. However, there are now
additional problems for sets where 0 < Yup, Ydown < 1.

For a maturity of 1 year, the Merton model proves itself to be a reliable base, as only
a few outlying results differ from the FFT results by more than 0.2. The results from the
Kou model are also promising: Kou only underperforms for high C parameter sets where
0 < Yup, Ydown < 1. However, in this case, the Kou model does produce better results for
more deep OTM options. The Gaussian base generally performs well, except at high C
combinations for Yup, Ydown < 0. However, we’ve seen for the BCON results that Gaussian
generally underperforms where Yup, Ydown < 0, which is where the Kou model performs
rather well.

Finally, for a maturity of half a year, we’ll need to consider those option prices computed
using the FFT method which are less than 1 separately to those prices which are greater
than 1. However, where there are erroneous results for option prices less than 1, even the
FFT and numerical integral values struggles to produce similar prices that agree to 2 deci-
mal places. Therefore it would be unwise to expect very good results from the Saddlepoint
approximation method. For FFT option values less than 1, both the Merton and Gaussian
base distributions experience problems in computing accurate values for most of the option
prices. The Kou base however, has performed very well here, it’s main problems being with
deep OTM options for set 12. Now we’ll investigate those FFT values which are greater
than 1. As seen in the BCON option case, the Merton and Gaussian models perform less
well for a shorter maturity: The Merton model experiences problems calculating the prices
of ITM options for sets 1 and 14. For a Gaussian base, around the ATM point (i.e. for
strikes of 90, 100, 110), there are mainly problems with the option prices produced where
Yup, Ydown < 0. The results for the Kou base distribution are better than using a Merton
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base (once the erroneous results for sets 7, 10 and 11 are removed). There are however
problems for ATM options for parameter sets 8 and 9.

Summary

As we would expect, pricing vanilla call options using the three Saddlepoint base distri-
butions produces similar trends to that observed from pricing BCON style options. The
Merton and Gaussian bases both perform better for a larger maturity, and conversely the
Merton distribution performs better for a shorter maturity. The parameter sets for which
each base distribution produces excellent results when pricing BCON options are the same
for when pricing vanilla options.

5.3 Higher-Order Approximation

Although the BCON results from the higher-order Saddlepoint approximation method (see
equations (3.2) and (3.3)) didn’t outperform the lower-order Saddlepoint results by a rela-
tively large amount, it is still worth exploring the effect a higher-order approximation has
on pricing vanilla options, as the CDM method of attaining Merton and Kou parameter sets
was more effective when calculating vanilla option prices compared to calculating BCON
option prices.

The same tests as that carried out for the lower-order approximation to price vanilla call
options was performed for the higher-order approximation. We will only be performing
these tests using the CDM method of attaining the Merton and Kou parameters. The
results can be seen in the following tables in Appendix B: Table 5 for T = 1, table 6 for
T = 2, table 7 for T = 0.5. (We note that in table 6, the Saddlepoint approximation has
not been able to compute vanilla option prices using the Kou model, for set 11. This is due
to the numerical instability issues explained in Appendix D).

5.3.1 Analysis of Results

As seen for the comparison between the moment matching and CDM methods, we will
consider a difference of 0.05 between the lower-order and higher-order results as a large dif-
ference. Again the results look very promising as there is a distinct pattern forming for when
the results from the higher-order approximation outperform those from the lower-order ap-
proximation. However, across these results, none outperform the lower-order approximation
results by a large amount.

Two-Year Maturity

For T = 2, as seen in the BCON case, the higher-order approximation using the Merton
base distribution does well for parameter sets where 0 < Yup, Ydown < 1 (excluding pa-
rameter set 1) and parameter sets 10 and 13. For the Kou model, excluding parameter
set 1 as for the Merton model, the higher-order approximation produces results that out-
perform the lower-order results for deep OTM options where 0 < Yup, Ydown < 1. Finally,
for the Gaussian base distribution, the higher-order approximation produces results that
outperform those produced using the lower-order approximation for OTM options across
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most of the parameter sets. Except at parameter set 13 for the Merton model, the higher-
order results do not differ from the lower-order results by more than 0.05, indicating that
the higher-order approximation hasn’t yet brought about a significant improvement in the
results.

One-Year Maturity

Using the Merton base distribution, the higher-order approximation produces better results
than the lower-order approximation across the varying strikes for parameter sets where
Yup, Ydown > 0. The exception is for parameter set 1. For the Kou model, excluding param-
eter set 1 again as for the Merton model, the higher-order approximation produces results
that outperform the lower-order results for deep OTM options where 0 < Yup, Ydown < 1.
Finally, using the Gaussian base distribution, the higher-order approximation produces re-
sults that outperform those produced using the lower-order approximation for OTM options
for parameter sets where Yup, Ydown < 0. However, none of these results differ from those
produced by implementing the lower-order Saddlepoint formula by more than 0.05. The
results so far indicate that there doesn’t seem to be strong evidence to support the use of
the more computationally expensive higher-order Saddlepoint approximation.

Half-Year Maturity

Finally, at the shortest maturity, for the Merton model, excluding sets 1, 4, and 9, the
higher-order approximation outperforms the lower-order approximation mostly for OTM
options where 0 < Yup, Ydown < 1, and for all parameter sets where Yup, Ydown > 1. The
Kou model experiences good results from the higher-order approximation for deep OTM
options for parameter sets 2, 3, and 8. For the Gaussian base distribution, the higher-
order approximation produces results that outperform those produced using the lower-
order approximation for OTM options for parameter sets where Yup, Ydown > 0. However,
again, the results from the lower-order approximation only differ from the higher-order
approximation results by less than 0.05.

Summary

In summary, as seen for the BCON option case, even though the higher-order Saddlepoint
method produces excellent results, the results don’t outperform the lower-order results by
a significant amount. One possible reason for this could be that the lower-order approxi-
mation already produced fairly accurate vanilla option prices across all bases, and it would
be difficult to produce even better results using the Saddlepoint method for which we can’t
control the accuracy, as we can for the numerical integration we have seen in Section 4.

5.4 Comparison against Published Results

As mentioned in the Introduction, Saddlepoint techniques with various bases have been used
to calculate option prices in several published papers. In this section, we will reproduce the
same values to check the accuracy of our method using the three different base distributions.
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5.4.1 Comparison Against Carr and Madan (2008)

Carr and Madan identified that the price of a call option in the Black-Scholes model could
be written as a single probability with a Gaussian Minus Exponential distribution. They
then used the Saddlepoint method to calculate option prices under the CGMY model using
the Gaussian minus Exponential base distribution.
The CGMY parameters used are: Cup, Cdown = 2,M = 5, G = 10, Yup, Ydown = 0.5.
The option parameters used are: maturity T = 0.5; initial stock price St0 = 100; risk-free
rate r = 0.03; dividend yield q = 0; strike K takes values from 10 to 200, increasing in
steps of 10; and CGMY volatility σCGMY = 0.

Table 8 in Appendix B contains the Saddlepoint approximation results from Carr and
Madan (2008), our Saddlepoint results using the Merton, Kou and Gaussian bases distri-
butions, and the correct option prices given by the FFT method to compare against.

For strikes from 20 to 140, the Kou base distribution performs better than the base distri-
bution Carr and Madan (2008) use. For strikes of 140 to 200, the Gaussian and Merton
bases perform quite well, but not as well as Carr and Madan’s (2008) base. Carr and Madan
specifically aim to price deep out the money options. We have excellent results here as the
range of strikes for which the option prices obtained from the Kou model outperform the
prices in Carr and Madan (2008) are for the more commonly traded strikes.

5.4.2 Comparison Against Sepp (2004)

Sepp (2004) uses a numerical inversion of the Laplace transform technique to price vanilla
call options using the Kou model for a range of stock prices and Poisson process intensity
rates.
The Kou parameters used are: η1 = η2 = 10, p = 0.5, λ = 0, 3, 5.
The option parameters used are: maturity T = 1; initial stock prices St0 = 90, 100, 110;
risk-free rate r = 0.05; dividend yield q = 0.02; strikes K = 100; and Kou volatility
σKou = 0.2.

By comparing the CGMY and Kou characteristic functions, given the Kou parameters
above, we can read off what values the CGMY model should take. In particular,
M = G = 10, Ydown = Yup = −1. The results from Sepp (2004) and our lower-order Sad-
dlepoint results are in the following tables in Appendix B: Table 9 for λ = 0, table 10 for
λ = 3 and table 11 for λ = 5. These tables also contain “exact” option prices from the
numerical integration method which is to be used as a comparison value. The Merton base
distribution results are not available for the intensity of λ = 0.

The results using the Kou base distribution are very accurate (to 10 significant figures), for
a small intensity rate of λ = 0 as they match with the values from Sepp (2004), and the
comparison values from the numerical integration. As the intensity rate increases, the Kou
model still performs well. The Gaussian base also performs well, but as would be expected,
it performs slightly less well as the intensity rate increases.

It is clear that all three Saddlepoint methods produce very accurate results. Of course,
from Proposition 3.1.3, we know that using a Kou base should produce essentially exact
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results which our numerical results confirm. However, we also see that the Merton and
Gaussian bases perform very well.

5.4.3 Comparison Against Rogers and Zane (1999)

Rogers and Zane (1999) use a Gaussian base Saddlepoint approximation to compute put
option prices for three different models. One of the models used is the variance gamma
(VG) model, a special case of the CGMY model.
The corresponding CGMY parameterisation used in these tests are: Cup, Cdown = 1,
G =M = 7.071068, Yup, Ydown = 0.
The option parameters used are: maturity T = 0.25, 0.5, 0.75, 1 years; initial stock price
St0 = 1; risk-free rate r = 0.05; dividend yield q = 0; strikesK = exp (−0.05), exp (0), exp (0.05);
and CGMY volatility σCGMY = 0.

Table 12 in Appendix B contains the values Rogers and Zane (1999) obtained from their
Saddlepoint approximation, the results from our Saddlepoint approximation using the Mer-
ton, Kou and Gaussian base distributions, and option prices obtained from the FFT method
to use as a comparison. Appendix C contains graphs related to the option prices computed,
which will be described in more detail later.

The Kou base distribution has performed better overall, as it consistently outperformed
Rogers and Zane’s (1999) Gaussian Saddlepoint results, except at a maturity of 5 years.
Also, it has performed better than our Gaussian base, except at maturities of 2 and 5 years.
These findings fall in line with our previous analysis that the Kou model doesn’t produce
accurate values for larger maturities. However on this occasion, we have not experienced
the same numerical instability issues for large maturities. There is a problem with the
option price obtained from all of our Saddlepoint bases when K = exp (0.05) for a 2 year
maturity - we will discuss this in more detail later.

Our Gaussian base Saddlepoint has also performed well. Some of the results obtained
are different to the Gaussian Saddlepoint results from Rogers and Zane (1999), but for
those combinations of the maturity and strike where our Gaussian base distribution hasn’t
performed as well, the values are mostly within 10e-4 of the values from Rogers and Zane
(1999).

The Merton base gives varied results. It produces good results across all maturities, but
only outperforms the results from Rogers and Zane (1999) for random combinations of the
maturities and the strikes. Since there is no exact combination for where the Merton base
definitely outperforms the published results, a combination of using a Kou base for the
smaller maturities, and a Gaussian base for the maturity of 5 years, would provide a good
base to rival the results from Rogers and Zane (1999).

All three Saddlepoint bases return strange values when K = exp (0.05) and T = 2 years.
Figure 4(a) displays the Saddlepoint and FFT option prices for ST = 1,K = exp (0.05), and
for maturities varying from 1 to 2 years, in steps of 0.05. One can see that for a maturity
between 1.6 and 1.75 years, and particularly for T = 1.7, the option prices produced using
all three Saddlepoint base distributions are flawed. To understand why this problem occurs
for all three base distributions, we need to investigate the lower-order Saddlepoint formula
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given in equation (3.1) as it is the link between the three base distributions. One can see
that the final Saddlepoint formula is constructed of three parts: the cdf and pdf functions
of the base distribution, and a factor multiplying the pdf. The only plausible reason why
the Saddlepoint formula could give a negative value, or a value greater than 1 is because the
absolute size of the factor which is multiplied by the pdf function is very large, for either
or both of the probabilities under the different measures ((PQ(ST > K) or (PR(ST > K))
used to form the final option price. Referring to the Saddlepoint formula in equation (3.1),
one can see that the composition of this factor involves calculating “s”. When this value is
very close to zero, the multiplying factor becomes very large. Figure 4(b) shows that this
is exactly the case when calculating PQ(ST > K), as s, calculated using a Gaussian base
distribution, hits a minimum of 0.002271 for a maturity of 1.7 years.

The same tests have been carried out for when we change the interest rate, and include a div-
idend yield in the calculation. Changing these parameters so that r = 0.1, q = 0.02, figure
5(a) shows that compared to the FFT option price, the Saddlepoint option prices produce
unreliable results at both T = 0.5 years and T = 0.85 years. Figures 5(b) and 5(c), display
the values of s from equation (3.1) when calculating PQ(ST > K) and PR(ST > K), where
the values of s were calculated using a Gaussian base distribution. The two graphs confirm
that at T = 0.5 years and T = 0.85 years, s hits a minimum of 0.001996 and 0.004638 re-
spectively. (The bigger error for a maturity of 0.5 years is reflected in the smaller value of s).

This problem only seems to occur for the VG model. This can be demonstrated by applying
a different set of parameters: By changing the parameters to θ = −1, ν = 1.2, σ2vg = 0.05
(and the corresponding C,G,M parameterisation: C = 0.833333, G = 0.816660,
M = 40.816660), and using St0 = 1,K = exp (0.05), r = 0.05, q = 0, figure 6(a) shows that
the Saddlepoint method provides unreliable results at T = 0.2 years. Figure 6(b) confirms
that at this maturity, s, calculated using a Gaussian base distribution, hits a minimum of
0.006892.

Digressing slightly, it will be useful to confirm that we did not experience these problems
with the CGMY parameters in our previous tests, where Yup, Ydown 6= 0. Taking parameter
set 6 as an example, figure 7(a) displays the vanilla call option values obtained using the
FFT method and the Saddlepoint approximation method for all three base distributions
for ST = 1,K = exp (0.05), r = 0.05, q = 0 and for varying maturities ranging from 0 to
2.5 years. Figure 7(b) displays the corresponding values of s, calculated using a Gaussian
base distribution for varying maturities. As one can see, the Saddlepoint method using
the Merton and Gaussian base distributions produce accurate results for this parameter set
without any problems. (The Kou model experiences problems for larger maturities with
this parameter set (i.e. higher C parameter set), which we have recognised in Section 5).

Since the option prices from Rogers and Zane (1999) do not experience this problem, it
will be interesting to see how our higher-order Saddlepoint approximation using a Gaussian
base distribution behaves for these VG parameters, as the higher-order formula in equation
(3.3) is not a direct extension of the lower-order formula in equation (3.1), as is the case
for the Merton and Kou model. We computed option prices for the original parameters
in Rogers and Zane (1999), using the higher-order Saddlepoint approximation for a Gaus-
sian base distribution, and the FFT method - to be used as a comparison for the actual
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values. Figure 8 displays the results. We can see that the results from the higher-order
approximation are very good, as it didn’t encounter the same errors in the value of s, as the
lower-order approximation has - (see figure 4). Therefore, in order to overcome the obstacle
of producing flawed option prices due to a very small value of s, it may be necessary to
calculate the minimum value of s for varying maturities, and then switch to applying the
higher-order Saddlepoint approximation for a Gaussian base distribution if necessary.
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6 Extension of Carr-Madan Base

We will now consider an extension to the base used in Carr & Madan’s paper “Saddlepoint
Methods for Option Pricing”. The base distribution used in this paper is: Z+ 1λ−Y , where
Z is a standard Gaussian random variable and Y is a positive exponential with parameter λ.
We will extend this by letting Z denote a random variable following a Merton distribution.

We omit full details for the sake of brevity, since they can be found in Carr and Madan
(2008). However, we do need to specify the cdf and pdf of the proposed “Merton Minus
Exponential” base distribution which we do in the following Proposition and Corollary.

6.1 Merton Minus Exponential Distribution

Proposition 6.1.1. The complementary cdf for the base Z + 1λ − Y is given by:
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√
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2
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2
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∫ ∞

a− 1
λ

fZ(z)e
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λ
)))dz = e(λa−1)
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2
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Completing the square, we obtain:
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2
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.

Simplifying this equation, the complementary cdf of this base is:

P

(
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1

λ
− Y > a

)

=
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− e
βλ2

2
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.

Corollary 6.1.2. The pdf of the base Z + 1λ − Y is given by:

fZ+ 1
λ
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.
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Proof.
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)]

.

6.2 Results

We have computed some results using the Gaussian Minus Exponential (henceforth GME)
base distribution, and the Merton Minus Exponential (henceforth MME) base distribution.

6.2.1 Comparison Against Black Scholes

The first set of results are computed for where the log of stock price follows the Black Sc-
holes model. We compare results obtained from using our GME base to the values in Carr
and Madan (2008), and the correct option prices obtained from the Black Scholes pricing
formula.
The option parameters used are: maturity T = 0.5, 1; initial stock price St0 = 100; risk-free
rate r = 0.03; dividend yield q = 0; varying strikes, K; and GME volatility σ = 0.25.
The results can be found in table 13 in Appendix B.

Carr and Madan (2008) prove that the GME base distribution is a shift and scale of the
distribution that we are approximating, and therefore, by proposition 3.1.3, we would ex-
pect the results from our Saddlepoint approximation using the GME base distribution to
be exact. Our results show that the GME base distribution performs as expected, as the
results match perfectly with those obtained from the Black Scholes pricing formula. The
results from Carr and Madan (2008) are slightly different - but this may be due to the
values of the strikes that are used in that paper, as they have been rounded.

6.2.2 CGMY Results

The second set of results are computed for where the log of the stock price follows a CGMY
process. We compare results obtained from using our GME and MME base distributions
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6. EXTENSION OF CARR-MADAN BASE

with the correct values from the numerical integration and FFT methods.
The CGMY parameters used are parameter sets 1, 7 and 10.
The option parameters used are: maturity T = 1; initial stock price St0 = 100; risk-free
rate r = 0.03; dividend yield q = 0; strike K takes values from 60 to 140, in steps of 10;
and CGMY volatility σCGMY = 0.2.
The results can be found in table 14 in Appendix B.

We can see that the GME base distribution has performed very well as all of the results
are within 0.14 of the integral values. The MME base hasn’t made the improvement upon
the results of the GME base as we had hoped, but the majority of the results are within
0.33 of the integration values. The largest differences being for ITM options for parameter
set 1. We note that excluding the ITM options from parameter set 1 for the MME base
distribution, the results from both the GME and MME base distributions are all less than
the true option price. Therefore, in the spirit of suggesting avenues for future research, a
correction term might be added onto the option prices from both bases to produce a more
accurate result.
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7 Conclusions

Lévy process models were introduced to compensate for the drawbacks of the standard
Black-Scholes model. However, since the probability density function is rarely known in
closed form, pricing vanilla options under Lévy processes require numerical methods.

The Saddlepoint approximation method uses a model’s cumulant generating function, which
is always available, to compute probabilities, and hence to compute option prices. It pro-
duces results that are far superior to the numerical integration method with respect to
speed, and produces reliable and accurate results where the FFT option pricing technique
breaks down.

In this dissertation, we’ve shown that the Merton (1976) and Kou (2002) models both
generate good base distributions to use in the Saddlepoint approximation method to price
options under the CGMY model. These base distributions outperform the commonly used
Gaussian base distribution in terms of accuracy, depending on the CGMY parameters.
We’ve also demonstrated that results obtained from using the higher-order approximation
reveal a distinct pattern in the strikes and CGMY parameters for which it outperforms
results from using the lower-order approximation.

Further research that could be done is to incorporate the higher-order Saddlepoint for-
mula for the Gaussian Minus Exponential and Merton Minus Exponential distributions
into Carr and Madan’s (2008) method of using a single probability to value vanilla options.
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Appendix A: QQ Plots

• Results for St0 = 1,K = 1, r = 0.05, q = 0.02, σCGMY = 0.2, T = 1.
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(a) Set 1 QQ plot for Merton-Kou
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(b) Set 6 QQ plot for Merton-Kou

Figure 1: QQ Plots for Merton & Kou distributions where 0 < Yup, Ydown < 1.
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(a) Set 10 QQ plot for Merton-Kou
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(b) Set 11 QQ plot for Merton-Kou

Figure 2: QQ Plots for Merton & Kou distributions where 1 < Yup, Ydown < 2.
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(a) Set 12 QQ plot for Merton-Kou
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(b) Set 15 QQ plot for Merton-Kou

Figure 3: QQ Plots for Merton & Kou distributions where Yup, Ydown < 0.
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Appendix B : Results Tables

Table 1: BCON Style Option Values: St0 = 100, r = 0.05, q = 0.02, σCGMY = 0, T = 1

Set K Merton-0 Merton-t̂ Kou-0 Kou-t̂ Gaussian Integral
1 60 0.924844 0.929460 0.933284 0.927562 0.932613 0.932116
1 70 0.910637 0.894389 0.912547 0.901637 0.910250 0.909092
1 80 0.902655 0.828168 0.874751 0.855301 0.867519 0.865254
1 90 0.844337 0.722139 0.807547 0.772755 0.787612 0.784256
1 100 0.585566 0.566565 0.630545 0.619620 0.634383 0.633962
1 110 0.305302 0.328448 0.311216 0.330619 0.336783 0.336612
1 120 0.085503 0.114061 0.084151 0.095703 0.092173 0.084157
1 130 0.024790 0.034178 0.024078 0.029664 0.026639 0.025401
1 140 0.008904 0.010118 0.008351 0.010598 0.008986 0.008749
2 60 0.876225 0.873040 0.877253 0.876536 0.876419 0.875543
2 70 0.815799 0.810353 0.813676 0.812507 0.812069 0.810895
2 80 0.732423 0.723616 0.725202 0.723641 0.722957 0.721651
2 90 0.621678 0.615735 0.615267 0.614134 0.613321 0.612123
2 100 0.493780 0.495448 0.492926 0.493313 0.492470 0.491590
2 110 0.368430 0.375327 0.371450 0.373454 0.372651 0.372162
2 120 0.260160 0.267638 0.263560 0.266248 0.265544 0.265355
2 130 0.174731 0.180448 0.176990 0.179434 0.178878 0.178824
2 140 0.112269 0.116054 0.113448 0.115270 0.114877 0.114841
3 60 0.887311 0.882543 0.889205 0.888214 0.888267 0.887438
3 70 0.833741 0.823969 0.831184 0.829509 0.829192 0.828010
3 80 0.755683 0.739864 0.745818 0.743337 0.742741 0.741353
3 90 0.641096 0.630440 0.633441 0.631428 0.630764 0.629423
3 100 0.501356 0.503148 0.502187 0.502631 0.502102 0.501019
3 110 0.363987 0.372713 0.368958 0.371772 0.371487 0.370673
3 120 0.247656 0.255911 0.251651 0.254969 0.254929 0.254233
3 130 0.158705 0.164182 0.160726 0.163281 0.163395 0.162744
3 140 0.096712 0.099974 0.097510 0.099139 0.099295 0.098756
4 60 0.919292 0.913843 0.920495 0.912091 0.919590 0.916015
4 70 0.874886 0.851911 0.872083 0.858386 0.869853 0.864610
4 80 0.787813 0.758811 0.780302 0.767804 0.778518 0.772488
4 90 0.645988 0.631698 0.642395 0.636712 0.644330 0.638944
4 100 0.480767 0.481309 0.482645 0.482866 0.487083 0.483470
4 110 0.330675 0.336641 0.333908 0.336497 0.337926 0.336309
4 120 0.213825 0.220781 0.216369 0.219618 0.219193 0.219070
4 130 0.132660 0.139430 0.134157 0.137490 0.136059 0.136744
4 140 0.080586 0.086791 0.081257 0.084370 0.082518 0.083490
5 60 0.858734 0.861119 0.860142 0.860539 0.858942 0.859103
5 70 0.796510 0.794720 0.793012 0.793057 0.790761 0.791166
5 80 0.714029 0.706627 0.704820 0.704304 0.701419 0.702219
5 90 0.606156 0.600936 0.599300 0.598693 0.595527 0.596782
5 100 0.483490 0.485954 0.483852 0.484290 0.481367 0.482868
5 110 0.364824 0.372651 0.369553 0.371493 0.369423 0.370621
5 120 0.263132 0.271593 0.267927 0.270562 0.269700 0.270024
5 130 0.183047 0.189615 0.186192 0.188518 0.188715 0.188112
5 140 0.123997 0.128324 0.125636 0.127252 0.128029 0.126974
6 60 0.797682 0.798179 0.767771 0.774361 0.796185 0.795947
6 70 0.716442 0.716150 0.689358 0.692752 0.713962 0.713717
6 80 0.625365 0.624672 0.601461 0.602720 0.622577 0.622350
6 90 0.530949 0.530693 0.510782 0.510945 0.528875 0.528676
6 100 0.439619 0.440266 0.423288 0.423148 0.438804 0.438630
6 110 0.356295 0.357757 0.343360 0.343387 0.356655 0.356494
6 120 0.283762 0.285663 0.273539 0.273925 0.284881 0.284725
6 130 0.222886 0.224853 0.214724 0.215478 0.224331 0.224175
6 140 0.173211 0.174997 0.166604 0.167649 0.174676 0.174521
7 60 0.590332 0.590259 0.018217 0.018191 0.590212 0.590039
7 70 0.518334 0.518309 0.015876 0.015850 0.518263 0.518110
7 80 0.454129 0.454150 0.013732 0.013765 0.454106 0.453975
7 90 0.397640 0.397701 0.011820 0.011943 0.397659 0.397550
7 100 0.348329 0.348423 0.010146 0.010368 0.348383 0.348295
7 110 0.305474 0.305593 0.008697 0.009013 0.305554 0.305485
7 120 0.268311 0.268447 0.007452 0.007850 0.268410 0.268357
7 130 0.236104 0.236252 0.006388 0.006853 0.236217 0.236177
7 140 0.208186 0.208340 0.005480 0.005997 0.208306 0.208279
8 60 0.845427 0.851549 0.849413 0.850484 0.848399 0.848147
8 70 0.789889 0.791624 0.786880 0.787920 0.785097 0.784746
8 80 0.723403 0.715702 0.708326 0.708998 0.705545 0.705132
8 90 0.633296 0.625645 0.616228 0.616359 0.612461 0.612075
8 100 0.520234 0.525156 0.514314 0.514432 0.510289 0.510082
8 110 0.401149 0.419669 0.407555 0.409049 0.404797 0.404994
8 120 0.292934 0.315916 0.302965 0.306833 0.302469 0.303373
8 130 0.201761 0.221084 0.208683 0.214383 0.209727 0.211686
8 140 0.127737 0.141583 0.131034 0.137303 0.132153 0.135357
9 60 0.898072 0.895919 0.904379 0.905137 0.903352 0.903292
9 70 0.861531 0.847118 0.859662 0.860367 0.857075 0.857063
9 80 0.813853 0.774129 0.790202 0.789458 0.784367 0.784714
9 90 0.709091 0.671898 0.689730 0.686349 0.679453 0.681006
9 100 0.536315 0.537868 0.548412 0.548768 0.540397 0.544748
9 110 0.356193 0.380382 0.374601 0.384527 0.376188 0.383589
9 120 0.206850 0.230527 0.214123 0.224717 0.219874 0.222474
9 130 0.105563 0.124427 0.107151 0.114000 0.112745 0.109231
9 140 0.052483 0.064952 0.052387 0.056204 0.056072 0.053688

Continued on next page
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Table 1 – continued from previous page

set K Merton-0 Merton-t̂ Kou-0 Kou-t̂ Gaussian integral
10 60 0.615868 0.615824 0.000477 0.001369 0.615932 0.615696
10 70 0.540194 0.540177 -0.000092 0.000333 0.540271 0.540056
10 80 0.471966 0.471968 -0.000154 0.000547 0.472051 0.471857
10 90 0.411552 0.411569 -0.000076 0.000139 0.411640 0.411469
10 100 0.358646 0.358674 0.000121 0.000173 0.358734 0.358584
10 110 0.312624 0.312658 0.000038 0.000114 0.312710 0.312579
10 120 0.272745 0.272783 0.000041 0.000062 0.272828 0.272713
10 130 0.238257 0.238298 0.000006 0.000035 0.238336 0.238237
10 140 0.208455 0.208496 0.000030 0.000009 0.208529 0.208442
11 60 0.299483 0.299484 0.000000 0.000000 0.299487 0.299479
11 70 0.268435 0.268436 0.000000 0.000000 0.268438 0.268431
11 80 0.242843 0.242844 0.000000 0.000000 0.242847 0.242840
11 90 0.221366 0.221368 0.000000 0.000000 0.221370 0.221364
11 100 0.203077 0.203078 0.000000 0.000000 0.203080 0.203075
11 110 0.187311 0.187313 0.000000 0.000000 0.187315 0.187309
11 120 0.173581 0.173582 0.000000 0.000000 0.173584 0.173579
11 130 0.161518 0.161519 0.000000 0.000000 0.161521 0.161516
11 140 0.150838 0.150839 0.000000 0.000000 0.150841 0.150836
12 60 0.939466 0.943008 0.944742 0.944879 0.943557 0.781965
12 70 0.935543 0.928524 0.936697 0.936450 0.933522 0.992924
12 80 0.934165 0.891447 0.921686 0.918967 0.913823 1.073402
12 90 0.938264 0.807007 0.895178 0.880922 0.876156 0.956567
12 100 0.721817 0.607683 0.826565 0.764095 0.788731 0.821607
12 110 0.052904 0.162514 0.050067 0.094094 0.089617 0.013092
12 120 0.009115 0.033475 0.017817 0.025121 0.025299 -0.071724
12 130 0.009331 0.010276 0.007549 0.009679 0.009929 -0.186301
12 140 0.006474 0.004365 0.003452 0.004277 0.004360 -0.043865
13 60 0.904027 0.908222 0.913868 0.915427 0.912513 0.903710
13 70 0.882788 0.868804 0.879309 0.882041 0.876040 0.895339
13 80 0.864896 0.806021 0.825284 0.829132 0.817630 0.774586
13 90 0.787011 0.710153 0.746327 0.749178 0.727838 0.733857
13 100 0.570690 0.566497 0.626360 0.625722 0.588145 0.617320
13 110 0.326110 0.360003 0.356161 0.375014 0.363629 0.419264
13 120 0.134315 0.171349 0.126386 0.126614 0.155145 0.129851
13 130 0.055814 0.079310 0.056862 0.054680 0.067458 0.051882
13 140 0.029350 0.039257 0.028806 0.027068 0.032487 0.031403
14 60 0.921402 0.918755 0.924214 0.849831
14 70 0.915989 0.887621 0.899337 0.613249
14 80 0.914095 0.834784 0.859267 0.688169
14 90 0.884369 0.745140 0.795619 0.823548
14 100 0.609025 0.582828 0.668576 0.863742
14 110 0.205320 0.279699 0.229279 -0.027328
14 120 0.037143 0.119771 0.083749 0.062299
14 130 0.019833 0.060880 0.042905 -0.080939
14 140 0.017414 0.033781 0.024269 -0.128533
15 60 0.926897 0.921721 0.926910 0.557685
15 70 0.923802 0.893662 0.905304 0.799862
15 80 0.922924 0.845897 0.871489 0.694428
15 90 0.915092 0.764017 0.821247 0.748462
15 100 0.666037 0.611958 0.744851 0.792465
15 110 0.136213 0.228399 0.149280 0.053365
15 120 0.012769 0.072051 0.043871 0.000330
15 130 0.008651 0.030138 0.019753 -0.126446
15 140 0.007585 0.014012 0.009782 0.106096

Table 2: BCON Style Option Values: St0 = 100, r = 0.05, q = 0.02, σCGMY = 0.2, T = 1

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral
1 60 0.919836 0.904884 0.918485 0.917989 0.907512 0.908276 0.915794 0.913518
1 70 0.881673 0.846056 0.873650 0.872068 0.856455 0.863649 0.871039 0.863706
1 80 0.793306 0.755106 0.769431 0.781871 0.768527 0.784749 0.788469 0.774257
1 90 0.650289 0.633708 0.621452 0.647091 0.642105 0.656781 0.661087 0.644932
1 100 0.490457 0.490901 0.479758 0.493309 0.493435 0.496839 0.506010 0.494212
1 110 0.345259 0.348607 0.346741 0.347749 0.348744 0.346050 0.355086 0.348721
1 120 0.226740 0.228952 0.229431 0.227858 0.228613 0.225224 0.231092 0.228416
1 130 0.139549 0.141014 0.141452 0.140083 0.140668 0.138136 0.141157 0.140479
1 140 0.081318 0.082603 0.082890 0.081706 0.082275 0.080654 0.081840 0.082116
2 60 0.846786 0.842698 0.844077 0.845584 0.843949 0.843398 0.845152 0.843707
2 70 0.770429 0.765966 0.766512 0.767863 0.766178 0.767550 0.767756 0.765793
2 80 0.674044 0.670641 0.669605 0.671270 0.670088 0.672526 0.671885 0.669622
2 90 0.566426 0.565169 0.562615 0.564717 0.564302 0.566345 0.566088 0.563818
2 100 0.458526 0.459253 0.456186 0.458150 0.458388 0.459054 0.459960 0.457939
2 110 0.359242 0.361051 0.358443 0.359728 0.360331 0.359503 0.361569 0.359949
2 120 0.273705 0.275754 0.273969 0.274496 0.275209 0.273354 0.276084 0.274904
2 130 0.203670 0.205496 0.204434 0.204432 0.205105 0.202835 0.205653 0.204872
2 140 0.148601 0.150058 0.149478 0.149210 0.149786 0.147583 0.150076 0.149613
3 60 0.859504 0.853243 0.856595 0.858138 0.855913 0.855372 0.857563 0.855946
3 70 0.786092 0.779006 0.781480 0.782882 0.780502 0.782289 0.782766 0.780386
3 80 0.688690 0.683356 0.683165 0.685330 0.683636 0.686750 0.686276 0.683388
3 90 0.576502 0.574519 0.571751 0.574705 0.574091 0.576635 0.576720 0.573759
3 100 0.462612 0.463429 0.459896 0.462524 0.462780 0.463543 0.465052 0.462426
3 110 0.357812 0.359930 0.357130 0.358638 0.359324 0.358313 0.361056 0.358998
3 120 0.268197 0.270455 0.268753 0.269207 0.269983 0.267909 0.271156 0.269712
3 130 0.195760 0.197648 0.196770 0.196611 0.197312 0.194948 0.198009 0.197101
3 140 0.139777 0.141206 0.140793 0.140397 0.140975 0.138841 0.141321 0.140819
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Table 2 – continued from previous page

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral
4 60 0.887147 0.875719 0.877903 0.885750 0.878653 0.883722 0.885779 0.881222
4 70 0.810934 0.799707 0.800949 0.808440 0.802883 0.809667 0.809715 0.804633
4 80 0.702629 0.696369 0.694847 0.700638 0.697819 0.703459 0.703059 0.698611
4 90 0.577599 0.575698 0.573392 0.576884 0.576063 0.578979 0.579515 0.576296
4 100 0.453332 0.453744 0.452140 0.453556 0.453733 0.454110 0.455656 0.453726
4 110 0.342271 0.343590 0.342873 0.342905 0.343496 0.342307 0.344265 0.343406
4 120 0.250461 0.252068 0.251909 0.251186 0.251962 0.250160 0.251931 0.251846
4 130 0.178889 0.180586 0.180658 0.179567 0.180456 0.178685 0.179914 0.180324
4 140 0.125507 0.127237 0.127332 0.126084 0.127053 0.125645 0.126216 0.126901
5 60 0.830968 0.829230 0.829103 0.829462 0.828809 0.828033 0.828677 0.828218
5 70 0.753923 0.750679 0.750889 0.750723 0.749832 0.750557 0.750065 0.749244
5 80 0.659420 0.656416 0.655668 0.656100 0.655372 0.656992 0.656027 0.654853
5 90 0.555499 0.554402 0.552114 0.553630 0.553371 0.554758 0.554327 0.552939
5 100 0.452190 0.453171 0.450159 0.452037 0.452275 0.452615 0.453310 0.451925
5 110 0.357514 0.359740 0.357075 0.358449 0.359020 0.358185 0.359930 0.358739
5 120 0.275939 0.278519 0.276672 0.277253 0.277967 0.276332 0.278637 0.277743
5 130 0.208868 0.211270 0.210169 0.210131 0.210855 0.208940 0.211265 0.210678
5 140 0.155694 0.157714 0.157103 0.156737 0.157405 0.155622 0.157594 0.157266
6 60 0.769033 0.768622 0.767558 0.739925 0.745205 0.739621 0.767904 0.767363
6 70 0.684239 0.683645 0.682565 0.658496 0.661122 0.658776 0.683012 0.682372
6 80 0.594438 0.593995 0.592856 0.572192 0.573140 0.572749 0.593500 0.592822
6 90 0.505845 0.505790 0.504597 0.487036 0.487102 0.487539 0.505433 0.504775
6 100 0.423090 0.423465 0.422294 0.407435 0.407174 0.407673 0.423219 0.422622
6 110 0.348965 0.349669 0.348615 0.336045 0.335791 0.335953 0.349503 0.348991
6 120 0.284667 0.285556 0.284676 0.274032 0.273953 0.273653 0.285441 0.285023
6 130 0.230244 0.231189 0.230499 0.221481 0.221635 0.220911 0.231104 0.230778
6 140 0.185033 0.185944 0.185430 0.177793 0.178173 0.177136 0.185878 0.185633
7 60 0.577620 0.577564 0.577361 0.017738 0.017741 0.017742 0.577555 0.577381
7 70 0.507321 0.507305 0.507119 0.015462 0.015450 0.015465 0.507294 0.507141
7 80 0.445057 0.445079 0.444912 0.013399 0.013430 0.013401 0.445066 0.444934
7 90 0.390507 0.390561 0.390414 0.011573 0.011675 0.011574 0.390546 0.390435
7 100 0.343001 0.343080 0.342953 0.009979 0.010162 0.009979 0.343063 0.342973
7 110 0.301752 0.301850 0.301741 0.008601 0.008863 0.008599 0.301831 0.301759
7 120 0.265974 0.266087 0.265993 0.007416 0.007748 0.007413 0.266066 0.266010
7 130 0.234938 0.235059 0.234980 0.006400 0.006791 0.006397 0.235037 0.234994
7 140 0.207988 0.208114 0.208048 0.005531 0.005967 0.005527 0.208092 0.208060
8 60 0.824345 0.823426 0.822328 0.822972 0.822674 0.821026 0.821854 0.821324
8 70 0.755828 0.751908 0.752272 0.750691 0.750014 0.750354 0.749371 0.748497
8 80 0.671265 0.666525 0.666002 0.664552 0.663809 0.665856 0.663560 0.662289
8 90 0.574336 0.572338 0.568216 0.569635 0.569308 0.571712 0.569551 0.567912
8 100 0.473460 0.475559 0.468232 0.472304 0.472682 0.473820 0.473366 0.471479
8 110 0.377418 0.382339 0.374540 0.378907 0.379906 0.378808 0.380864 0.378919
8 120 0.292062 0.297684 0.291684 0.294495 0.295796 0.292521 0.296822 0.295017
8 130 0.219952 0.224811 0.221147 0.222151 0.223437 0.218785 0.224354 0.222841
8 140 0.161430 0.165034 0.163127 0.162987 0.164075 0.159040 0.164778 0.163632
9 60 0.880140 0.869869 0.878259 0.878479 0.876187 0.874491 0.877078 0.876198
9 70 0.819596 0.803635 0.814831 0.813249 0.809745 0.811312 0.812028 0.809909
9 80 0.726532 0.712217 0.718046 0.719543 0.716391 0.720880 0.720285 0.716595
9 90 0.606235 0.600219 0.597004 0.603425 0.602062 0.606339 0.606830 0.602130
9 100 0.477465 0.478810 0.472315 0.478744 0.479065 0.480302 0.483428 0.478943
9 110 0.357738 0.361900 0.357721 0.360369 0.361453 0.359549 0.364450 0.361206
9 120 0.256425 0.260606 0.259146 0.258733 0.259949 0.256513 0.261328 0.259656
9 130 0.176648 0.180252 0.179980 0.178358 0.179540 0.176069 0.179574 0.179240
9 140 0.117652 0.120856 0.120727 0.118928 0.120098 0.117371 0.119266 0.119802
10 60 0.601679 0.601646 0.601507 0.002488 -0.000307 0.002503 0.601744 0.601540
10 70 0.527854 0.527843 0.527714 0.003309 0.003657 0.003330 0.527928 0.527742
10 80 0.461829 0.461833 0.461717 0.001623 0.000560 0.001631 0.461908 0.461741
10 90 0.403657 0.403673 0.403569 0.000844 0.000386 0.000846 0.403738 0.403590
10 100 0.352854 0.352878 0.352786 0.000667 -0.000018 0.000668 0.352934 0.352803
10 110 0.308709 0.308737 0.308656 0.000700 0.000802 0.000699 0.308786 0.308671
10 120 0.270447 0.270479 0.270407 0.000206 -0.000042 0.000205 0.270520 0.270420
10 130 0.237318 0.237351 0.237289 0.000185 0.000179 0.000184 0.237387 0.237299
10 140 0.208632 0.208666 0.208611 0.000200 0.000090 0.000198 0.208697 0.208620
11 60 0.296578 0.296579 0.296574 0.000000 0.000000 0.000000 0.296582 0.296574
11 70 0.265894 0.265895 0.265891 0.000000 0.000000 0.000000 0.265898 0.265891
11 80 0.240611 0.240612 0.240608 0.000000 0.000000 0.000000 0.240615 0.240608
11 90 0.219398 0.219399 0.219395 0.000000 0.000000 0.000000 0.219401 0.219395
11 100 0.201334 0.201336 0.201332 0.000000 0.000000 0.000000 0.201338 0.201332
11 110 0.185764 0.185766 0.185762 0.000000 0.000000 0.000000 0.185768 0.185762
11 120 0.172204 0.172205 0.172202 0.000000 0.000000 0.000000 0.172207 0.172202
11 130 0.160290 0.160291 0.160288 0.000000 0.000000 0.000000 0.160293 0.160288
11 140 0.149740 0.149741 0.149739 0.000000 0.000000 0.000000 0.149743 0.149739
12 60 0.938699 0.929170 0.940941 0.936427 0.931420 0.931366 0.934075 0.935095
12 70 0.916215 0.888038 0.920157 0.904367 0.894909 0.894053 0.906918 0.899957
12 80 0.839723 0.800727 0.822339 0.820665 0.811500 0.816985 0.840575 0.814806
12 90 0.679864 0.661880 0.631627 0.673034 0.670078 0.680984 0.699487 0.671396
12 100 0.493898 0.493613 0.484040 0.495816 0.495779 0.497268 0.508825 0.496060
12 110 0.328190 0.329711 0.331055 0.329442 0.329649 0.328763 0.332974 0.329630
12 120 0.198116 0.200368 0.203300 0.199312 0.199678 0.198209 0.198490 0.199577
12 130 0.109001 0.113166 0.118155 0.111242 0.112113 0.109552 0.108206 0.111956
12 140 0.054676 0.060268 0.064795 0.057813 0.059389 0.056821 0.054031 0.059201
13 60 0.895840 0.884593 0.895853 0.893114 0.892849 0.890877 0.890602 0.892166
13 70 0.849078 0.825287 0.847009 0.838160 0.836387 0.836325 0.835367 0.836268
13 80 0.762005 0.737219 0.753618 0.750472 0.748085 0.750583 0.751351 0.748571
13 90 0.632838 0.621452 0.618815 0.629915 0.628694 0.631817 0.636812 0.629242
13 100 0.487452 0.488756 0.479359 0.491571 0.491722 0.492661 0.500877 0.491976
13 110 0.352602 0.357585 0.354547 0.357253 0.357893 0.356476 0.363977 0.357885
13 120 0.240381 0.245192 0.245888 0.243612 0.244314 0.242136 0.246372 0.244172
13 130 0.155049 0.159801 0.160179 0.157593 0.158372 0.156530 0.157654 0.158173
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Table 2 – continued from previous page

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral
13 140 0.095763 0.100589 0.099532 0.097991 0.098859 0.097778 0.097005 0.098639
14 60 0.918675 0.898883 0.919970 0.912737 0.912497 0.914008 0.907851 0.913208
14 70 0.886648 0.847219 0.888629 0.869793 0.871309 0.871559 0.865889 0.870935
14 80 0.804229 0.762250 0.797870 0.786320 0.788754 0.787045 0.794320 0.787576
14 90 0.658911 0.639257 0.632098 0.655371 0.656534 0.653791 0.677720 0.655709
14 100 0.489370 0.489922 0.476825 0.495739 0.495707 0.495010 0.514894 0.495446
14 110 0.336245 0.341673 0.347726 0.341105 0.340777 0.342056 0.345153 0.340827
14 120 0.210379 0.220908 0.226660 0.217148 0.216418 0.218287 0.209607 0.216642
14 130 0.120956 0.136204 0.130514 0.130775 0.129524 0.130598 0.120115 0.129884
14 140 0.067021 0.082307 0.069259 0.076106 0.074703 0.074628 0.068446 0.075156
15 60 0.924961 0.903392 0.926467 0.918282 0.916841 0.921591 0.912466 0.919434
15 70 0.898319 0.855528 0.902286 0.879752 0.883617 0.885298 0.875566 0.882785
15 80 0.821767 0.774356 0.820337 0.799927 0.807720 0.803659 0.811711 0.803681
15 90 0.675604 0.651862 0.645063 0.669689 0.673610 0.665081 0.701520 0.670907
15 100 0.497942 0.498031 0.479022 0.505324 0.505310 0.502588 0.533605 0.504494
15 110 0.338844 0.341634 0.346445 0.342387 0.341892 0.344325 0.353207 0.341893
15 120 0.208789 0.212956 0.219655 0.211925 0.211082 0.214758 0.210394 0.211328
15 130 0.115872 0.123562 0.127603 0.122784 0.120815 0.124678 0.114257 0.121182
15 140 0.059224 0.068175 0.064588 0.068071 0.065213 0.065677 0.058141 0.065683

Table 3: BCON Style Option Values: St0 = 100, r = 0.05, q = 0.02, σCGMY = 0.2, T = 2

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral
1 60 0.825396 0.812395 0.821358 0.822077 0.817935 0.818869 0.822133 0.819105
1 70 0.759079 0.745671 0.751776 0.754205 0.750297 0.753891 0.756194 0.751282
1 80 0.669402 0.660460 0.660634 0.665630 0.663184 0.667670 0.669748 0.663795
1 90 0.566640 0.563256 0.559621 0.565228 0.564336 0.567546 0.570400 0.564588
1 100 0.462873 0.463122 0.459198 0.463206 0.463271 0.464419 0.468152 0.463285
1 110 0.366844 0.368495 0.365884 0.367831 0.368269 0.367791 0.371828 0.368167
1 120 0.283297 0.285061 0.283699 0.284264 0.284751 0.283417 0.287163 0.284613
1 130 0.213979 0.215400 0.214776 0.214706 0.215122 0.213534 0.216661 0.214990
1 140 0.158639 0.159669 0.159400 0.159129 0.159453 0.157957 0.160378 0.159343
2 60 0.717018 0.716652 0.715742 0.689014 0.698725 0.688857 0.716367 0.715685
2 70 0.640452 0.640062 0.639096 0.616087 0.621719 0.616353 0.639849 0.639079
2 80 0.561751 0.561488 0.560488 0.540876 0.543413 0.541340 0.561354 0.560557
2 90 0.485282 0.485236 0.484235 0.467630 0.467966 0.468072 0.485169 0.484395
2 100 0.414032 0.414215 0.413257 0.399251 0.398131 0.399524 0.414197 0.413481
2 110 0.349716 0.350086 0.349212 0.337417 0.335417 0.337454 0.350097 0.349460
2 120 0.293044 0.293536 0.292773 0.282842 0.280388 0.282645 0.293562 0.293012
2 130 0.244023 0.244575 0.243932 0.235569 0.232957 0.235175 0.244605 0.244142
2 140 0.202221 0.202783 0.202258 0.195211 0.192637 0.194675 0.202811 0.202429
3 60 0.732977 0.732306 0.731449 0.716652 0.720349 0.716376 0.732183 0.731344
3 70 0.656100 0.655417 0.654429 0.641604 0.643604 0.641877 0.655383 0.654402
3 80 0.575182 0.574721 0.573619 0.562638 0.563491 0.563179 0.574782 0.573747
3 90 0.495356 0.495243 0.494084 0.484750 0.484899 0.485273 0.495375 0.494361
3 100 0.420363 0.420590 0.419463 0.411540 0.411308 0.411858 0.420762 0.419824
3 110 0.352472 0.352954 0.351934 0.345198 0.344802 0.345233 0.353137 0.352308
3 120 0.292723 0.293352 0.292483 0.286744 0.286317 0.286506 0.293525 0.292817
3 130 0.241264 0.241947 0.241241 0.236345 0.235964 0.235891 0.242099 0.241512
3 140 0.197680 0.198351 0.197798 0.193620 0.193321 0.193023 0.198476 0.198001
4 60 0.760216 0.758288 0.757943 0.758058 0.755666 0.757916 0.760037 0.758511
4 70 0.678111 0.676815 0.676150 0.676132 0.674699 0.676578 0.678216 0.676745
4 80 0.589257 0.588582 0.587830 0.587608 0.586909 0.588203 0.589662 0.588384
4 90 0.501121 0.500936 0.500252 0.499829 0.499643 0.500273 0.501733 0.500709
4 100 0.418929 0.419074 0.418529 0.417948 0.418093 0.418128 0.419632 0.418867
4 110 0.345610 0.345948 0.345554 0.344869 0.345214 0.344801 0.346310 0.345779
4 120 0.282287 0.282721 0.282460 0.281723 0.282179 0.281482 0.282930 0.282593
4 130 0.228882 0.229350 0.229192 0.228445 0.228954 0.228118 0.229441 0.229258
4 140 0.184620 0.185086 0.185005 0.184273 0.184799 0.183935 0.185091 0.185024
5 60 0.697289 0.697103 0.696205 0.674962 0.679725 0.674911 0.696312 0.696009
5 70 0.621807 0.621512 0.620622 0.602259 0.604724 0.602484 0.620830 0.620447
5 80 0.545810 0.545596 0.544689 0.528948 0.529886 0.529287 0.545052 0.544618
5 90 0.472919 0.472915 0.469834 0.458569 0.458581 0.461010 0.472506 0.472052
5 100 0.405513 0.405755 0.404844 0.393418 0.392934 0.393587 0.405459 0.405013
5 110 0.344875 0.345331 0.344477 0.334737 0.334044 0.334733 0.345122 0.344706
5 120 0.291460 0.292065 0.291301 0.282975 0.282252 0.282805 0.291919 0.291546
5 130 0.245152 0.245837 0.245183 0.238043 0.237392 0.237738 0.245735 0.245411
5 140 0.205490 0.206198 0.205657 0.199516 0.198986 0.199119 0.206125 0.205852
6 60 0.624048 0.623954 0.623528 0.122078 0.131483 0.122097 0.623730 0.623512
6 70 0.552563 0.552496 0.552075 0.109039 0.113071 0.109071 0.552298 0.552071
6 80 0.485882 0.485864 0.485457 0.096316 0.097051 0.096350 0.485694 0.485468
6 90 0.425220 0.425259 0.424875 0.084370 0.083236 0.084396 0.425117 0.424901
6 100 0.370967 0.371062 0.370705 0.073450 0.071392 0.073462 0.370943 0.370742
6 110 0.323013 0.323155 0.322829 0.063656 0.061276 0.063653 0.323057 0.322873
6 120 0.280971 0.281149 0.280856 0.054992 0.052652 0.054974 0.281068 0.280903
6 130 0.244318 0.244521 0.244260 0.047405 0.045308 0.047374 0.244455 0.244308
6 140 0.212483 0.212702 0.212471 0.040809 0.039054 0.040768 0.212646 0.212517
7 60 0.427492 0.427496 0.427439 0.000000 0.000000 0.000000 0.427490 0.427443
7 70 0.379755 0.379766 0.379714 0.000000 0.000000 0.000000 0.379760 0.379717
7 80 0.339300 0.339317 0.339269 0.000000 0.000000 0.000000 0.339310 0.339273
7 90 0.304747 0.304767 0.304725 0.000000 0.000000 0.000000 0.304761 0.304728
7 100 0.275015 0.275038 0.275000 0.000000 0.000000 0.000000 0.275032 0.275003
7 110 0.249255 0.249281 0.249246 0.000000 0.000000 0.000000 0.249275 0.249249
7 120 0.226796 0.226824 0.226793 0.000000 0.000000 0.000000 0.226818 0.226795
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Table 3 – continued from previous page

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral
7 130 0.207103 0.207132 0.207103 0.000000 0.000000 0.000000 0.207125 0.207106
7 140 0.189742 0.189772 0.189746 0.000000 0.000000 0.000000 0.189766 0.189748
8 60 0.695957 0.696648 0.694492 0.694825 0.694714 0.694713 0.694465 0.694130
8 70 0.625980 0.626167 0.624186 0.624334 0.624214 0.624701 0.624030 0.623598
8 80 0.554878 0.554801 0.552924 0.553021 0.552942 0.553658 0.552845 0.552331
8 90 0.485437 0.485439 0.722315 0.483743 0.483744 0.246879 0.483736 0.483162
8 100 0.419802 0.420127 0.418118 0.418532 0.418630 0.418992 0.418700 0.418094
8 110 0.359429 0.360158 0.358096 0.358673 0.358865 0.358793 0.358998 0.358385
8 120 0.305125 0.306205 0.304194 0.304841 0.305109 0.304558 0.305286 0.304687
8 130 0.257163 0.258474 0.256619 0.257239 0.257558 0.256559 0.257760 0.257193
8 140 0.215421 0.216832 0.215205 0.215729 0.216074 0.214709 0.216285 0.215763
9 60 0.764546 0.762835 0.762553 0.762874 0.762192 0.762120 0.762629 0.761800
9 70 0.691108 0.688958 0.688419 0.688768 0.688088 0.688923 0.688914 0.687701
9 80 0.608186 0.606520 0.605286 0.606038 0.605575 0.606783 0.606705 0.605212
9 90 0.522068 0.521469 0.519559 0.520719 0.520563 0.521548 0.521838 0.520234
9 100 0.438536 0.439007 0.436830 0.438084 0.438204 0.438593 0.439456 0.437912
9 110 0.361720 0.362917 0.360909 0.361935 0.362242 0.361953 0.363345 0.361989
9 120 0.293906 0.295438 0.293839 0.294487 0.294890 0.294045 0.295774 0.294676
9 130 0.235890 0.237469 0.236320 0.236601 0.237034 0.235838 0.237679 0.236854
9 140 0.187454 0.188920 0.188151 0.188157 0.188579 0.187239 0.189000 0.188431
10 60 0.452335 0.452335 0.841650 0.000000 0.000000 0.835138 0.452360 0.452299
10 70 0.401118 0.401121 0.783863 0.000000 0.000000 0.775459 0.401145 0.401088
10 80 0.357454 0.357459 0.691065 0.000000 0.000000 0.690034 0.357480 0.357428
10 90 0.320024 0.320030 0.578255 0.000000 0.000000 0.586608 0.320050 0.320002
10 100 0.287753 0.287761 0.468577 0.000000 0.000000 0.477414 0.287778 0.287735
10 110 0.259774 0.259782 0.369016 0.000000 0.000000 0.372834 0.259798 0.259758
10 120 0.235384 0.235392 0.279955 0.000000 0.000000 0.280603 0.235407 0.235370
10 130 0.214014 0.214023 0.205137 0.000000 0.000000 0.204804 0.214036 0.214003
10 140 0.195202 0.195211 0.146455 0.000000 0.000000 0.145927 0.195223 0.195192
11 60 0.162867 0.162867 0.790292 0.787936 0.162868 0.162866
11 70 0.147647 0.147647 0.721067 0.719045 0.147648 0.147646
11 80 0.135233 0.135233 0.635940 0.636332 0.135234 0.135232
11 90 0.124875 0.124875 0.543054 0.545779 0.124876 0.124875
11 100 0.116078 0.116079 0.451198 0.454433 0.116079 0.116078
11 110 0.108498 0.108499 0.366321 0.368511 0.108499 0.108498
11 120 0.101888 0.101888 0.291445 0.292211 0.101889 0.101888
11 130 0.096065 0.096065 0.227772 0.227503 0.096066 0.096065
11 140 0.090891 0.090891 0.175343 0.174578 0.090892 0.090890
12 60 0.863307 0.848999 0.862084 0.858305 0.855329 0.854890 0.860188 0.856503
12 70 0.806446 0.788662 0.798175 0.798604 0.795476 0.797352 0.805785 0.796484
12 80 0.712263 0.700080 0.697620 0.706760 0.704963 0.708388 0.717220 0.705583
12 90 0.594821 0.590563 0.584385 0.593439 0.592896 0.595000 0.602627 0.593180
12 100 0.473722 0.473521 0.470248 0.474298 0.474274 0.474809 0.480386 0.474367
12 110 0.361971 0.362818 0.361900 0.362809 0.362910 0.362732 0.366227 0.362918
12 120 0.266707 0.267601 0.267578 0.267362 0.267476 0.267085 0.268993 0.267453
12 130 0.190549 0.191372 0.191628 0.191068 0.191185 0.190762 0.191605 0.191154
12 140 0.132727 0.133565 0.133938 0.133218 0.133353 0.132947 0.133112 0.133320
13 60 0.791773 0.788443 0.790292 0.788636 0.788286 0.787936 0.787846 0.787986
13 70 0.724016 0.718728 0.721067 0.719168 0.718649 0.719045 0.719094 0.718424
13 80 0.640080 0.635623 0.635940 0.635922 0.635487 0.636332 0.637087 0.635340
13 90 0.547142 0.545299 0.543054 0.545199 0.545016 0.545779 0.547517 0.544914
13 100 0.453918 0.454555 0.451198 0.454069 0.454134 0.454433 0.456965 0.454049
13 110 0.367218 0.369244 0.366321 0.368533 0.368753 0.368511 0.371361 0.368673
13 120 0.290922 0.293343 0.291445 0.292565 0.292848 0.292211 0.294898 0.292770
13 130 0.226499 0.228782 0.227772 0.228035 0.228324 0.227503 0.229720 0.228251
13 140 0.173840 0.175815 0.175343 0.175136 0.175409 0.174578 0.176211 0.175342
14 60 0.828519 0.816185 0.828066 0.821422 0.821779 0.822124 0.819966 0.821898
14 70 0.767863 0.751587 0.764583 0.758058 0.758722 0.758392 0.759570 0.758633
14 80 0.679333 0.666814 0.671743 0.672541 0.673104 0.672280 0.678356 0.672931
14 90 0.572996 0.567930 0.564316 0.571710 0.571945 0.571198 0.580047 0.571808
14 100 0.464094 0.464489 0.459600 0.466307 0.466288 0.466049 0.473973 0.466224
14 110 0.363617 0.366214 0.364293 0.366643 0.366514 0.366762 0.371573 0.366508
14 120 0.276792 0.280078 0.280440 0.279667 0.279489 0.280007 0.281502 0.279521
14 130 0.205464 0.209253 0.210130 0.208338 0.208112 0.208711 0.207720 0.208167
14 140 0.149438 0.153777 0.153989 0.152537 0.152253 0.152801 0.150426 0.152322
15 60 0.841321 0.826136 0.841650 0.832854 0.833801 0.835138 0.831064 0.834198
15 70 0.786085 0.765531 0.783863 0.773943 0.776148 0.775459 0.776425 0.775701
15 80 0.699240 0.682832 0.691065 0.690542 0.692539 0.690034 0.699511 0.691789
15 90 0.589829 0.582927 0.578255 0.588345 0.589201 0.586608 0.601316 0.588639
15 100 0.475434 0.475505 0.468577 0.478395 0.478386 0.477414 0.490612 0.478117
15 110 0.369335 0.371563 0.369016 0.372631 0.372338 0.372834 0.381274 0.372274
15 120 0.277540 0.279678 0.279955 0.279787 0.279478 0.280603 0.284624 0.279517
15 130 0.202318 0.204158 0.205137 0.203885 0.203583 0.204804 0.205783 0.203662
15 140 0.143652 0.145494 0.146455 0.145123 0.144779 0.145927 0.145033 0.144873

Table 4: BCON Style Option Values: St0 = 100, r = 0.05, q = 0.02, σCGMY = 0.2,
T = 0.5

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral
1 60 0.961325 0.962123 0.961997 0.963711 0.956218 0.953038 0.962173 0.961040
1 70 0.954532 0.936377 0.954579 0.946888 0.922826 0.927346 0.941899 0.936987
1 80 0.914269 0.850463 0.894352 0.892607 0.852021 0.876786 0.891796 0.871737
1 90 0.751271 0.697225 0.656695 0.738517 0.715112 0.771180 0.766918 0.727345
1 100 0.502444 0.502984 0.473689 0.509069 0.509255 0.518663 0.536808 0.511654

Continued on next page

51



Table 4 – continued from previous page

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral
1 110 0.293446 0.296781 0.301930 0.295153 0.296492 0.289357 0.302307 0.296239
1 120 0.140629 0.145015 0.148228 0.141800 0.143712 0.137733 0.141447 0.143131
1 130 0.055545 0.061681 0.064804 0.057092 0.060491 0.055745 0.055516 0.059788
1 140 0.018932 0.022375 0.023648 0.019873 0.023056 0.022882 0.019064 0.022589
2 60 0.930838 0.920023 0.927707 0.931600 0.925411 0.924679 0.930502 0.928349
2 70 0.880896 0.858057 0.874183 0.876336 0.867733 0.871551 0.874490 0.870625
2 80 0.789469 0.764572 0.776986 0.780988 0.773094 0.782490 0.780626 0.775021
2 90 0.649124 0.637912 0.634901 0.645262 0.641822 0.650961 0.648829 0.642533
2 100 0.487199 0.489116 0.480320 0.489084 0.489699 0.491798 0.494892 0.489587
2 110 0.337198 0.342511 0.338262 0.340113 0.342009 0.337883 0.344861 0.341596
2 120 0.216318 0.220534 0.219678 0.218178 0.219914 0.214297 0.220779 0.219486
2 130 0.129390 0.132437 0.132288 0.130409 0.131845 0.127632 0.131477 0.131472
2 140 0.073068 0.075506 0.075193 0.073649 0.074896 0.072651 0.073998 0.074569
3 60 0.937368 0.927238 0.934723 0.938423 0.931404 0.930769 0.937194 0.935140
3 70 0.893788 0.867225 0.887106 0.888522 0.877778 0.882405 0.886279 0.882112
3 80 0.805806 0.774211 0.791113 0.795919 0.785489 0.797161 0.795695 0.788910
3 90 0.659964 0.645408 0.641922 0.656063 0.651505 0.662983 0.661288 0.653167
3 100 0.488462 0.490337 0.480540 0.491178 0.491785 0.494203 0.498863 0.492073
3 110 0.331013 0.336345 0.333005 0.334167 0.336090 0.331505 0.339711 0.335810
3 120 0.206188 0.210205 0.210019 0.207939 0.209631 0.204135 0.210574 0.209242
3 130 0.118956 0.121978 0.121922 0.119881 0.121331 0.117707 0.120811 0.120959
3 140 0.064660 0.067211 0.066740 0.065184 0.066488 0.064896 0.065453 0.066144
4 60 0.960406 0.965446 0.933374 0.961430 0.959982 0.966817 0.960394 0.952631
4 70 0.924765 0.909989 0.884431 0.921301 0.902605 0.929729 0.919789 0.906003
4 80 0.825977 0.792985 0.782556 0.818801 0.799547 0.835025 0.822322 0.807048
4 90 0.658627 0.645978 0.635004 0.656179 0.650543 0.668033 0.663860 0.653450
4 100 0.473028 0.473927 0.469606 0.474394 0.474769 0.476005 0.479615 0.475234
4 110 0.309283 0.313758 0.314071 0.311251 0.313247 0.308164 0.312891 0.312864
4 120 0.185832 0.192649 0.193220 0.187739 0.191113 0.184714 0.187696 0.190165
4 130 0.104533 0.113194 0.112724 0.106045 0.110808 0.105089 0.105793 0.109293
4 140 0.056368 0.064632 0.064161 0.057262 0.062600 0.058395 0.057258 0.060773
5 60 0.919651 0.911144 0.918556 0.920290 0.918658 0.915469 0.918808 0.918447
5 70 0.868017 0.848862 0.864478 0.861589 0.857930 0.858072 0.858950 0.857874
5 80 0.777101 0.754716 0.768242 0.766919 0.762360 0.767519 0.765088 0.762615
5 90 0.639463 0.629075 0.627301 0.635690 0.633348 0.639471 0.637615 0.633655
5 100 0.481934 0.484424 0.475932 0.485100 0.485732 0.486868 0.489895 0.485771
5 110 0.336860 0.343394 0.339422 0.341201 0.343100 0.339138 0.345505 0.342847
5 120 0.220133 0.226312 0.225352 0.223232 0.225278 0.220205 0.225686 0.224859
5 130 0.135955 0.141294 0.140181 0.137924 0.139867 0.136405 0.139107 0.139393
5 140 0.080873 0.085365 0.083554 0.082031 0.083745 0.082377 0.082694 0.083294
6 60 0.883749 0.879247 0.881406 0.882886 0.881381 0.880007 0.882008 0.881003
6 70 0.808162 0.801835 0.804131 0.804833 0.802868 0.803989 0.803872 0.802374
6 80 0.705351 0.699731 0.700082 0.701327 0.699700 0.702633 0.701046 0.699185
6 90 0.584019 0.581926 0.579324 0.581942 0.581338 0.583846 0.582798 0.580863
6 100 0.459983 0.461359 0.457623 0.460241 0.460657 0.461050 0.461935 0.460247
6 110 0.347052 0.350085 0.347176 0.348483 0.349478 0.347748 0.350371 0.349139
6 120 0.252683 0.255872 0.254232 0.254247 0.255402 0.252622 0.255871 0.255132
6 130 0.178768 0.181473 0.180682 0.180026 0.181118 0.178386 0.181243 0.180906
6 140 0.123730 0.125842 0.125444 0.124615 0.125563 0.123503 0.125470 0.125400
7 60 0.723005 0.722483 0.721877 0.605333 0.602449 0.605483 0.722555 0.721959
7 70 0.633109 0.632751 0.632153 0.529835 0.528192 0.530164 0.632802 0.632259
7 80 0.545939 0.545804 0.545248 0.456168 0.455575 0.456475 0.545831 0.545376
7 90 0.465428 0.465513 0.465024 0.387902 0.388287 0.388072 0.465513 0.465158
7 100 0.393542 0.393808 0.393399 0.326869 0.328148 0.326872 0.393780 0.393525
7 110 0.330869 0.331263 0.330937 0.273668 0.275716 0.273526 0.331210 0.331045
7 120 0.277141 0.277614 0.277365 0.228124 0.230790 0.227883 0.277540 0.277450
7 130 0.231626 0.232136 0.231955 0.189631 0.192758 0.189343 0.232046 0.232018
7 140 0.193386 0.193903 0.193780 0.157392 0.160833 0.157100 0.193802 0.193822
8 60 0.909727 0.898897 0.908660 0.911325 0.909817 0.905429 0.909635 0.909021
8 70 0.865838 0.839043 0.862516 0.855957 0.852501 0.851713 0.852615 0.851309
8 80 0.789212 0.754781 0.779342 0.772179 0.767024 0.772722 0.768294 0.765767
8 90 0.662788 0.644590 0.644118 0.655477 0.652101 0.661282 0.655258 0.650999
8 100 0.507272 0.512370 0.491368 0.513354 0.514529 0.518058 0.519247 0.513520
8 110 0.359103 0.371501 0.358577 0.367039 0.370634 0.363647 0.375322 0.369658
8 120 0.234609 0.242696 0.241069 0.238236 0.241221 0.229248 0.244225 0.240378
8 130 0.138580 0.142886 0.143753 0.139710 0.141673 0.131449 0.142431 0.141022
8 140 0.073349 0.076690 0.077940 0.073931 0.075693 0.068877 0.074590 0.075168
9 60 0.943385 0.934237 0.943168 0.945593 0.940071 0.938064 0.943886 0.943419
9 70 0.915515 0.881568 0.913116 0.907478 0.896264 0.898903 0.903421 0.901494
9 80 0.845852 0.794134 0.832460 0.829298 0.814350 0.826915 0.826754 0.820472
9 90 0.694825 0.665930 0.664067 0.689293 0.681144 0.698474 0.697632 0.685404
9 100 0.498196 0.500458 0.483502 0.504855 0.505509 0.509373 0.518646 0.506811
9 110 0.319180 0.327300 0.328084 0.324157 0.326770 0.318838 0.330877 0.326437
9 120 0.179182 0.188776 0.191358 0.182507 0.186021 0.177060 0.182565 0.184971
9 130 0.088643 0.099957 0.098032 0.091537 0.096438 0.091161 0.090026 0.094913
9 140 0.040948 0.050009 0.045526 0.042683 0.047544 0.046801 0.042006 0.045838
10 60 0.744233 0.743858 0.743377 105.016527 883.145346 105.774553 0.744336 0.743641
10 70 0.651768 0.651566 0.651117 -9.931039 347.304985 -10.080893 0.651937 0.651321
10 80 0.560889 0.560816 0.560422 24.044312 72.577570 24.395858 0.561105 0.560579
10 90 0.476340 0.476356 0.476022 -1.425523 24.147696 -1.440147 0.476581 0.476142
10 100 0.400591 0.400664 0.400387 -3.435720 -0.427779 -3.449349 0.400838 0.400479
10 110 0.334499 0.334603 0.334378 8.561858 2.252761 8.543299 0.334738 0.334447
10 120 0.277908 0.278025 0.277845 4.798560 0.282456 4.759237 0.278129 0.277896
10 130 0.230100 0.230219 0.230075 3.674488 0.035018 3.623842 0.230299 0.230114
10 140 0.190099 0.190214 0.190100 2.464988 0.018732 2.418608 0.190275 0.190128
11 60 0.438816 0.438817 0.438800 0.000000 0.000000 0.000000 0.438828 0.438801
11 70 0.388417 0.388419 0.388403 0.000000 0.000000 0.000000 0.388429 0.388404
11 80 0.346044 0.346047 0.346032 0.000000 0.000000 0.000000 0.346056 0.346033
11 90 0.310085 0.310089 0.310075 0.000000 0.000000 0.000000 0.310097 0.310076
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Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral
11 100 0.279309 0.279312 0.279300 0.000000 0.000000 0.000000 0.279320 0.279301
11 110 0.252763 0.252767 0.252756 0.000000 0.000000 0.000000 0.252773 0.252756
11 120 0.229705 0.229709 0.229699 0.000000 0.000000 0.000000 0.229715 0.229700
11 130 0.209551 0.209555 0.209545 0.000000 0.000000 0.000000 0.209560 0.209546
11 140 0.191832 0.191836 0.191827 0.000000 0.000000 0.000000 0.191841 0.191828
12 60 0.969851 0.968037 0.971043 0.970392 0.965247 0.967430 0.968071 0.970059
12 70 0.968660 0.954808 0.976840 0.961371 0.947040 0.949455 0.956711 0.958643
12 80 0.945418 0.901205 0.974946 0.917779 0.893889 0.884594 0.927196 0.906725
12 90 0.797137 0.741392 0.713220 0.763851 0.748891 0.773724 0.822361 0.753112
12 100 0.502116 0.501805 0.476357 0.505417 0.505369 0.509230 0.529743 0.505903
12 110 0.265495 0.269561 0.284083 0.267485 0.268207 0.263415 0.265006 0.267990
12 120 0.098784 0.114233 0.146403 0.109482 0.114787 0.102217 0.095694 0.114483
12 130 0.026315 0.031979 0.025616 0.035492 0.041510 0.049507 0.026684 0.041358
12 140 0.007807 0.009064 0.003981 0.011070 0.014976 0.020754 0.008928 0.013479
13 60 0.948389 0.937926 0.949237 0.949935 0.950380 0.946950 0.947185 0.949392
13 70 0.932081 0.893662 0.933638 0.920218 0.917259 0.915766 0.913760 0.917836
13 80 0.877821 0.814164 0.875125 0.855074 0.846653 0.851200 0.850344 0.850516
13 90 0.725024 0.684540 0.690349 0.717669 0.711655 0.722008 0.732857 0.715533
13 100 0.502634 0.504327 0.480499 0.513338 0.513592 0.516393 0.537708 0.514793
13 110 0.303085 0.311251 0.320402 0.308383 0.309721 0.304517 0.314348 0.309464
13 120 0.150612 0.165146 0.165019 0.156874 0.159584 0.155233 0.151818 0.158733
13 130 0.065274 0.080429 0.069347 0.070860 0.074271 0.073937 0.067060 0.073080
13 140 0.028289 0.038197 0.028216 0.030843 0.033438 0.034649 0.030190 0.032227
14 60 0.959873 0.944315 0.960588 0.958434 0.957247 0.959575 0.953417 0.958624
14 70 0.953592 0.907549 0.957859 0.939196 0.939167 0.941582 0.929094 0.940190
14 80 0.913380 0.836456 0.928417 0.883669 0.889940 0.888317 0.882667 0.886081
14 90 0.759359 0.703650 0.726279 0.740077 0.744913 0.738533 0.783523 0.741763
14 100 0.500139 0.500713 0.468999 0.510114 0.510072 0.508262 0.549855 0.509555
14 110 0.271180 0.287946 0.321077 0.281972 0.280611 0.285848 0.263155 0.281060
14 120 0.106603 0.140876 0.109993 0.131617 0.127624 0.127901 0.103883 0.128946
14 130 0.039594 0.067084 0.031445 0.054987 0.051053 0.049427 0.046261 0.053167
14 140 0.016804 0.033906 0.012353 0.022749 0.020476 0.019570 0.023598 0.022000
15 60 0.962917 0.945720 0.963498 0.960679 0.963381 0.954751 0.961124
15 70 0.958657 0.911465 0.963426 0.944206 0.941586 0.950473 0.932938 0.946533
15 80 0.924159 0.844837 0.947400 0.891221 0.908002 0.907069 0.892470 0.897581
15 90 0.777322 0.715460 0.762863 0.748682 0.763967 0.748373 0.806116 0.754377
15 100 0.506457 0.506544 0.459976 0.517263 0.517246 0.510403 0.572618 0.515819
15 110 0.274859 0.281362 0.310511 0.279685 0.278139 0.288696 0.275180 0.278614
15 120 0.101881 0.124152 0.116610 0.128921 0.120358 0.121414 0.096098 0.121504
15 130 0.032592 0.047976 0.024311 0.050453 0.041967 0.030870 0.033400 0.045108
15 140 0.011514 0.019556 0.007238 0.017237 0.012094 0.007158 0.014013 0.015451

Table 5: Vanilla Call Option Values: St0 = 100, r = 0.05, q = 0.02, σCGMY = 0.2, T = 1

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral FFT
1 60 41.11396 41.57192 42.00354 41.25490 41.35146 41.04554 41.28881 41.31072 41.31068
1 70 32.01508 32.74138 33.54328 32.33608 32.44855 32.07189 32.33379 32.39618 32.39587
1 80 24.12423 24.41252 25.08618 24.23593 24.20920 23.87412 24.04184 24.17028 24.17041
1 90 17.56998 17.08802 17.53667 17.23499 17.05010 16.82799 16.87805 17.04633 17.04700
1 100 11.85143 11.28716 11.56581 11.48637 11.32703 11.21062 11.19886 11.34392 11.34494
1 110 7.32694 7.08511 7.23784 7.19946 7.12469 7.08262 7.04798 7.14378 7.14459
1 120 4.30274 4.24558 4.32418 4.29946 4.26973 4.26498 4.22745 4.28400 4.28495
1 130 2.45056 2.44450 2.48605 2.47197 2.45744 2.46451 2.43286 2.46642 2.46728
1 140 1.35994 1.36407 1.38830 1.37997 1.37030 1.37756 1.35371 1.37537 1.37579
2 60 42.16669 42.19688 42.24730 42.20662 42.21499 42.15241 42.21420 42.22537 42.22534
2 70 34.06541 34.11608 34.17307 34.15044 34.14585 34.07888 34.14301 34.15986 34.15974
2 80 26.92802 26.92027 26.97875 26.98457 26.95411 26.89402 26.94912 26.97079 26.97096
2 90 20.86747 20.75006 20.80558 20.83828 20.78182 20.73630 20.77510 20.79963 20.80004
2 100 15.84477 15.65054 15.69991 15.74682 15.67717 15.64887 15.66942 15.69449 15.69506
2 110 11.78069 11.57771 11.62141 11.66639 11.59856 11.58393 11.59053 11.61421 11.61468
2 120 8.58794 8.42293 8.45661 8.49538 8.43866 8.43806 8.43095 8.45202 8.45263
2 130 6.15734 6.04325 6.06978 6.09788 6.05491 6.06182 6.04789 6.06583 6.06649
2 140 4.35830 4.28791 4.30848 4.32711 4.29652 4.30710 4.29037 4.30518 4.30557
3 60 41.96007 42.01521 42.08237 42.01409 42.02337 41.95157 42.02085 42.03328 42.03325
3 70 33.71374 33.79081 33.86590 33.82290 33.81755 33.73943 33.81132 33.83132 33.83118
3 80 26.45971 26.44415 26.51991 26.51916 26.48075 26.41029 26.47084 26.49764 26.49782
3 90 20.31325 20.15069 20.22115 20.25753 20.18754 20.13423 20.17500 20.20590 20.20635
3 100 15.22173 14.97864 15.03966 15.09194 15.01008 14.97701 14.99646 15.02798 15.02860
3 110 11.11914 10.89019 10.93748 10.98879 10.91464 10.90206 10.90140 10.93063 10.93114
3 120 7.93567 7.76894 7.80786 7.84437 7.78706 7.78533 7.77517 7.80045 7.80111
3 130 5.55941 5.45662 5.48622 5.51003 5.46979 5.47588 5.45968 5.48048 5.48117
3 140 3.84214 3.78599 3.80822 3.82229 3.79555 3.80500 3.78725 3.80381 3.80421
4 60 41.52335 41.67429 41.81373 41.56557 41.61597 41.48262 41.55791 41.59227 41.59223
4 70 33.07958 33.16096 33.27177 33.13931 33.14098 33.03298 33.09165 33.13524 33.13511
4 80 25.63239 25.58405 25.66988 25.64238 25.59251 25.51429 25.55397 25.59891 25.59917
4 90 19.32943 19.18985 19.25582 19.27874 19.20591 19.15502 19.17658 19.21764 19.21821
4 100 14.20370 14.04512 14.09596 14.13147 14.06047 14.02976 14.03786 14.07339 14.07411
4 110 10.20891 10.07610 10.11682 10.14892 10.08935 10.06995 10.07108 10.10158 10.10213
4 120 7.21367 7.11975 7.15447 7.17835 7.13131 7.11565 7.11553 7.14214 7.14282
4 130 5.03547 4.97805 5.00960 5.02384 4.98834 4.97144 4.97376 4.99751 4.99818
4 140 3.48700 3.45879 3.48880 3.49265 3.46778 3.44720 3.45364 3.47518 3.47556
5 60 42.45414 42.48078 42.51618 42.51262 42.51520 42.47628 42.52006 42.52527 42.52525
5 70 34.50807 34.56799 34.61323 34.61643 34.60942 34.56571 34.61291 34.62241 34.62230
5 80 27.55079 27.53354 27.58506 27.60506 27.57707 27.53595 27.57738 27.59210 27.59225
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Table 5 – continued from previous page

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral FFT
5 90 21.65096 21.49300 21.54687 21.58606 21.53454 21.50148 21.53064 21.55048 21.55086
5 100 16.73106 16.47743 16.53005 16.58047 16.51439 16.49175 16.50643 16.53013 16.53066
5 110 12.70259 12.43948 12.48816 12.53858 12.47091 12.45828 12.45997 12.48558 12.48601
5 120 9.48957 9.27529 9.31855 9.36118 9.30135 9.29661 9.28893 9.31442 9.31499
5 130 6.99997 6.85137 6.88877 6.92077 6.87279 6.87320 6.86027 6.88406 6.88467
5 140 5.11904 5.02810 5.05989 5.08169 5.04573 5.04872 5.03412 5.05522 5.05559
6 60 43.66785 43.67316 43.68881 41.62386 42.09126 42.06744 43.68695 43.69199 43.69198
6 70 36.41446 36.41526 36.43410 34.70273 35.01844 34.99470 36.42961 36.43666 36.43661
6 80 30.05802 30.03704 30.05788 28.62500 28.82643 28.80567 30.05083 30.05964 30.05977
6 90 24.60436 24.55240 24.57407 23.40097 23.52098 23.50485 24.56489 24.57501 24.57529
6 100 20.00143 19.92253 19.94399 18.99140 19.05697 19.04605 19.93338 19.94429 19.94465
6 110 16.16734 16.07367 16.09421 15.32493 15.35664 15.35055 16.08281 16.09400 16.09429
6 120 13.00899 12.91355 12.93269 12.31353 12.32594 12.32386 12.92111 12.93214 12.93254
6 130 10.43198 10.34432 10.36180 9.86435 9.86697 9.86790 10.35051 10.36105 10.36150
6 140 8.34607 8.27130 8.28705 7.88764 7.88623 7.88918 8.27637 8.28621 8.28649
7 60 49.78649 49.77944 49.78308 1.22341 1.20736 1.20717 49.78049 49.78292 49.78291
7 70 44.37279 44.36306 44.36717 1.10126 1.09100 1.09084 44.36417 44.36698 44.36694
7 80 39.62117 39.60899 39.61346 0.99680 0.98271 0.98258 39.61013 39.61324 39.61327
7 90 35.45232 35.43808 35.44280 0.90647 0.88411 0.88400 35.43923 35.44257 35.44264
7 100 31.79226 31.77641 31.78132 0.82748 0.79541 0.79532 31.77756 31.78107 31.78117
7 110 28.57453 28.55753 28.56254 0.75772 0.71614 0.71607 28.55866 28.56229 28.56237
7 120 25.74060 25.72287 25.72794 0.69559 0.64555 0.64549 25.72399 25.72768 25.72781
7 130 23.23960 23.22150 23.22659 0.63987 0.58278 0.58274 23.22260 23.22632 23.22647
7 140 21.02755 21.00940 21.01428 0.58961 0.52698 0.52696 21.01047 21.01420 21.01430
8 60 42.67437 42.71202 42.77031 42.77330 42.78017 42.71442 42.79077 42.79674 42.79672
8 70 34.61559 34.82684 34.89916 34.90746 34.91281 34.83743 34.92491 34.93475 34.93459
8 80 27.59845 27.75182 27.83234 27.85997 27.84556 27.77241 27.85725 27.87162 27.87169
8 90 21.75684 21.59701 21.67961 21.74149 21.68795 21.62819 21.69736 21.71629 21.71660
8 100 16.88093 16.41173 16.49109 16.58620 16.49163 16.45254 16.49745 16.52020 16.52068
8 110 12.75333 12.18220 12.25416 12.36304 12.24677 12.23064 12.24855 12.27366 12.27409
8 120 9.31563 8.84020 8.90205 9.00087 8.88897 8.89360 8.88712 8.91276 8.91337
8 130 6.58412 6.27909 6.32971 6.40419 6.31409 6.33445 6.30960 6.33403 6.33471
8 140 4.53050 4.37233 4.41213 4.46041 4.39657 4.42648 4.39060 4.41255 4.41297
9 60 41.64904 41.78802 41.90598 41.75931 41.77226 41.68961 41.77799 41.78651 41.78647
9 70 33.06040 33.30312 33.44799 33.31017 33.31555 33.21268 33.31405 33.33312 33.33292
9 80 25.60119 25.61511 25.76773 25.70441 25.65894 25.55713 25.64463 25.67930 25.67944
9 90 19.35954 18.98805 19.13249 19.15740 19.04988 18.96834 19.02198 19.07251 19.07301
9 100 14.10336 13.58225 13.70783 13.77072 13.64305 13.59021 13.60596 13.66596 13.66670
9 110 9.81057 9.40534 9.50695 9.56032 9.45431 9.42805 9.41431 9.47505 9.47566
9 120 6.56415 6.33438 6.41357 6.44448 6.37011 6.36201 6.33177 6.38720 6.38798
9 130 4.27992 4.17302 4.23506 4.24831 4.19783 4.19826 4.16308 4.21090 4.21168
9 140 2.74331 2.70675 2.75688 2.75728 2.72281 2.72450 2.69213 2.73214 2.73257
10 60 48.66929 48.66687 48.66857 -0.09021 0.18278 0.18307 48.66683 48.66831 48.66830
10 70 43.02971 43.02661 43.02839 -0.22453 0.08918 0.08841 43.02657 43.02814 43.02811
10 80 38.08945 38.08579 38.08760 -0.04339 0.10741 0.10758 38.08576 38.08736 38.08740
10 90 33.76961 33.76553 33.76732 -0.06099 0.07204 0.07219 33.76550 33.76710 33.76719
10 100 29.99383 29.98945 29.99120 -0.01969 0.04360 0.04373 29.98943 29.99099 29.99111
10 110 26.69192 26.68735 26.68903 -0.07310 -0.04741 -0.04760 26.68733 26.68885 26.68895
10 120 23.80119 23.79654 23.79815 0.00104 0.03854 0.03864 23.79652 23.79798 23.79812
10 130 21.26665 21.26199 21.26351 0.01798 0.00778 0.00780 21.26198 21.26336 21.26353
10 140 19.04051 19.03590 19.03728 -0.00722 -0.00139 -0.00139 19.03589 19.03720 19.03732
11 60 68.05364 68.05350 68.05356 0.00000 0.00000 0.00000 68.05350 68.05356 68.05355
11 70 65.24653 65.24638 65.24644 0.00000 0.00000 0.00000 65.24638 65.24644 65.24638
11 80 62.71791 62.71774 62.71781 0.00000 0.00000 0.00000 62.71774 62.71781 62.71775
11 90 60.42086 60.42068 60.42075 0.00000 0.00000 0.00000 60.42068 60.42075 60.42070
11 100 58.31955 58.31936 58.31943 0.00000 0.00000 0.00000 58.31936 58.31943 58.31940
11 110 56.38594 56.38574 56.38582 0.00000 0.00000 0.00000 56.38574 56.38582 56.38580
11 120 54.59763 54.59742 54.59750 0.00000 0.00000 0.00000 54.59742 54.59750 54.59748
11 130 52.93643 52.93621 52.93629 0.00000 0.00000 0.00000 52.93621 52.93629 52.93627
11 140 51.38734 51.38711 51.38720 0.00000 0.00000 0.00000 51.38711 51.38719 51.38719
12 60 40.96668 41.25611 41.39210 41.06439 41.08305 41.00264 41.08787 41.08034 41.08029
12 70 31.63715 32.25378 33.12806 31.85608 31.90278 31.73387 31.84071 31.87418 31.87376
12 80 23.20826 23.65119 24.72678 23.30112 23.29289 23.09708 23.05238 23.25005 23.25018
12 90 16.20066 15.92216 16.46499 15.87346 15.79189 15.68866 15.47588 15.77676 15.77760
12 100 10.19505 9.91899 10.18515 9.96522 9.92865 9.88322 9.74718 9.93023 9.93150
12 110 5.87658 5.79722 5.91188 5.83220 5.82015 5.80484 5.73429 5.82404 5.82499
12 120 3.23688 3.20113 3.26499 3.22220 3.21139 3.20512 3.15313 3.21378 3.21480
12 130 1.70622 1.69792 1.75389 1.70501 1.68962 1.68275 1.62615 1.68955 1.69039
12 140 0.84233 0.89474 0.96140 0.87547 0.86174 0.84985 0.78794 0.85809 0.85846
13 60 41.38928 41.59490 41.70613 41.59667 41.60027 41.56993 41.62008 41.61218 41.61214
13 70 32.56957 32.92489 33.10259 32.93087 32.93191 32.88289 32.95454 32.94636 32.94608
13 80 24.97741 24.95844 25.18312 25.01417 24.98140 24.92142 24.98116 24.99375 24.99385
13 90 18.62850 18.01390 18.24671 18.14891 18.07114 18.01648 18.02142 18.08207 18.08264
13 100 13.10412 12.37932 12.59042 12.54055 12.45813 12.41984 12.36428 12.46960 12.47050
13 110 8.57140 8.14776 8.31735 8.27640 8.22030 8.19974 8.11469 8.23143 8.23217
13 120 5.35965 5.17976 5.30676 5.26898 5.23348 5.22522 5.14036 5.24278 5.24367
13 130 3.27770 3.21405 3.30967 3.27400 3.24788 3.24456 3.17425 3.25463 3.25547
13 140 1.96421 1.97073 2.04581 2.00542 1.98640 1.98288 1.93227 1.99064 1.99107
14 60 41.09512 41.42518 41.60027 41.39121 41.39056 41.40159 41.41613 41.38194 41.38189
14 70 32.08722 32.56142 32.91336 32.44188 32.44508 32.47078 32.49310 32.43531 32.43494
14 80 24.24888 24.28792 24.81925 24.07592 24.10322 24.14832 24.10100 24.10157 24.10166
14 90 17.69181 16.94351 17.48738 16.79264 16.84784 16.89403 16.65792 16.84907 16.84980
14 100 11.78460 11.03915 11.49552 11.04538 11.08655 11.11917 10.75544 11.08371 11.08483
14 110 7.22228 6.84866 7.20460 6.89996 6.92433 6.94527 6.60583 6.92005 6.92092
14 120 4.41447 4.14627 4.44955 4.13658 4.16589 4.18319 3.89989 4.16354 4.16452
14 130 2.57439 2.53044 2.83625 2.43060 2.46012 2.48087 2.27580 2.46106 2.46189
14 140 1.37430 1.58894 1.90911 1.44040 1.45637 1.48067 1.36600 1.45870 1.45908
15 60 41.04622 41.37736 41.56079 41.34618 41.34598 41.37068 41.36940 41.32177 41.32172
15 70 31.97023 32.45830 32.86335 32.30166 32.31608 32.37576 32.37398 32.28540 32.28499
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Table 5 – continued from previous page

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral FFT
15 80 23.97272 24.09231 24.77391 23.72996 23.81008 23.94254 23.83616 23.80885 23.80891
15 90 17.29812 16.58564 17.29944 16.22103 16.38164 16.53282 16.16665 16.39477 16.39552
15 100 11.17734 10.49064 11.04720 10.40593 10.50852 10.60042 10.11749 10.50495 10.50614
15 110 6.36961 6.21954 6.55821 6.26974 6.30234 6.35147 6.00992 6.29087 6.29180
15 120 3.59275 3.51559 3.70899 3.53336 3.56726 3.58536 3.37183 3.55787 3.55890
15 130 1.98220 1.93434 2.07295 1.87257 1.93159 1.94251 1.77680 1.92798 1.92885
15 140 1.01254 1.07362 1.21570 0.95942 1.01535 1.03357 0.90807 1.01827 1.01866

Table 6: Vanilla Call Option Values: St0 = 100, r = 0.05, q = 0.02, σCGMY = 0.2, T = 2

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral FFT
1 60 42.66276 42.82800 42.96305 42.77141 42.78591 42.69467 42.76566 42.78722 42.78719
1 70 34.81573 34.92645 35.06687 34.92883 34.91326 34.81698 34.87687 34.91669 34.91652
1 80 27.87413 27.80406 27.93607 27.87808 27.82000 27.73465 27.77199 27.82770 27.82780
1 90 21.86856 21.63727 21.75340 21.75030 21.66864 21.60287 21.61737 21.68004 21.68040
1 100 16.77241 16.49638 16.59189 16.60844 16.52978 16.48596 16.48257 16.54275 16.54327
1 110 12.58119 12.35217 12.42612 12.44225 12.38079 12.35677 12.34153 12.39337 12.39381
1 120 9.26185 9.10733 9.16214 9.17212 9.12946 9.12056 9.09893 9.14052 9.14111
1 130 6.72055 6.62908 6.66860 6.67318 6.64532 6.64630 6.62249 6.65441 6.65505
1 140 4.82478 4.77521 4.80330 4.80464 4.78682 4.79322 4.77009 4.79397 4.79436
2 60 44.81778 44.82021 44.83309 42.05811 43.64720 43.62559 44.82921 44.83426 44.83424
2 70 38.04320 38.04094 38.05596 35.66467 36.92140 36.90009 38.05012 38.05671 38.05664
2 80 32.05658 32.04235 32.05860 30.01679 30.99411 30.97537 32.05111 32.05893 32.05900
2 90 26.85107 26.82094 26.83758 25.10681 25.85666 25.84190 26.82891 26.83755 26.83773
2 100 22.38257 22.33736 22.35370 20.89462 21.46388 21.45368 22.34434 22.35339 22.35365
2 110 18.58583 18.52978 18.54534 17.32009 17.74893 17.74324 18.53573 18.54484 18.54506
2 120 15.38644 15.32504 15.33951 14.31330 14.63478 14.63311 15.32999 15.33888 15.33920
2 130 12.70851 12.64679 12.65997 11.80190 12.04234 12.04404 12.65083 12.65930 12.65967
2 140 10.47930 10.42100 10.43285 9.71597 9.89584 9.90015 10.42425 10.43217 10.43241
3 60 44.42853 44.43246 44.44875 43.15798 43.63186 43.60713 44.44386 44.44991 44.44989
3 70 37.49873 37.49610 37.51511 36.41915 36.77012 36.74539 37.50756 37.51569 37.51561
3 80 31.37384 31.35366 31.37415 30.45446 30.70604 30.68411 31.36431 31.37413 31.37420
3 90 26.05850 26.01608 26.03689 25.27221 25.44734 25.42995 26.02543 26.03636 26.03657
3 100 21.51281 21.45126 21.47147 20.83982 20.95870 20.94659 21.45912 21.47058 21.47087
3 110 17.67149 17.59848 17.61745 17.09789 17.17704 17.17011 17.60488 17.61634 17.61659
3 120 14.45756 14.38145 14.42299 13.97247 14.02454 13.99860 14.38651 14.39758 14.39793
3 130 11.79097 11.71833 11.73386 11.38450 11.41868 11.42011 11.72225 11.73266 11.73306
3 140 9.59383 9.52877 9.54247 9.25630 9.27898 9.28324 9.53176 9.54132 9.54159
4 60 43.68416 43.68378 43.70286 43.63657 43.41363 43.38761 43.68065 43.69224 43.69222
4 70 36.51210 36.49545 36.51529 36.47259 36.31741 36.29353 36.49351 36.50703 36.50697
4 80 30.20034 30.16632 30.18581 30.16248 30.04721 30.02740 30.16483 30.17920 30.17934
4 90 24.77064 24.72374 24.74217 24.73321 24.64312 24.62794 24.72241 24.73681 24.73708
4 100 20.18577 20.13266 20.14971 20.15066 20.07768 20.06669 20.13141 20.14532 20.14567
4 110 16.37149 16.31814 16.33375 16.34113 16.28051 16.27277 16.31696 16.33009 16.33037
4 120 13.23498 13.18547 13.19972 13.21104 13.15973 13.15416 13.18437 13.19660 13.19699
4 130 10.67848 10.63502 10.64802 10.66156 10.61752 10.61319 10.63401 10.64531 10.64574
4 140 8.60819 8.57158 8.58349 8.59803 8.55983 8.55596 8.57065 8.58106 8.58134
5 60 45.37172 45.37568 45.38700 43.53126 44.18573 44.17073 45.38676 45.38985 45.38984
5 70 38.79094 38.78911 38.80295 37.20725 37.68944 37.67445 38.80103 38.80553 38.80546
5 80 32.98095 32.96383 32.97951 31.61515 31.96650 31.95303 32.97578 32.98166 32.98171
5 90 27.92137 27.88370 28.09150 26.73876 26.99293 26.78974 27.89505 27.90215 27.90232
5 100 23.56097 23.50365 23.52096 22.53434 22.71789 22.70984 23.51401 23.52208 23.52231
5 110 19.83310 19.76146 19.77871 18.94196 19.07526 19.07016 19.77063 19.77937 19.77957
5 120 16.66602 16.58703 16.60380 15.89437 15.99257 15.99019 16.59497 16.60408 16.60437
5 130 13.98890 13.90901 13.92501 13.32324 13.39732 13.39724 13.91578 13.92500 13.92533
5 140 11.73502 11.65911 11.67415 11.16314 11.22085 11.22262 11.66482 11.67392 11.67414
6 60 47.57578 47.57312 47.57814 7.59826 9.22918 9.22739 47.57625 47.57841 47.57839
6 70 41.70391 41.69764 41.70351 6.61544 7.88462 7.88298 41.70105 41.70373 41.70368
6 80 36.52486 36.51408 36.52054 5.76341 6.75535 6.75395 36.51759 36.52072 36.52075
6 90 31.98269 31.96717 31.97403 5.02748 5.80463 5.80353 31.97067 31.97416 31.97425
6 100 28.01405 27.99415 28.00121 4.39277 5.00220 5.00142 27.99755 28.00129 28.00143
6 110 24.55469 24.53117 24.53829 3.84537 4.32312 4.32264 24.53442 24.53833 24.53845
6 120 21.54328 21.51710 21.52416 3.37282 3.74684 3.74663 21.52016 21.52415 21.52433
6 130 18.92333 18.89547 18.90238 2.96427 3.25640 3.25644 18.89833 18.90234 18.90256
6 140 16.64399 16.61535 16.62205 2.61041 2.83786 2.83810 16.61801 16.62199 16.62213
7 60 56.98352 56.98065 56.98179 0.00000 0.00000 0.00000 56.98095 56.98177 56.98176
7 70 52.95490 52.95146 52.95274 0.00000 0.00000 0.00000 52.95178 52.95270 52.95264
7 80 49.36578 49.36185 49.36323 0.00000 0.00000 0.00000 49.36219 49.36319 49.36315
7 90 46.15055 46.14619 46.14766 0.00000 0.00000 0.00000 46.14654 46.14762 46.14760
7 100 43.25583 43.25110 43.25264 0.00000 0.00000 0.00000 43.25146 43.25260 43.25260
7 110 40.63783 40.63279 40.63439 0.00000 0.00000 0.00000 40.63316 40.63435 40.63436
7 120 38.26033 38.25503 38.25668 0.00000 0.00000 0.00000 38.25541 38.25663 38.25666
7 130 36.09311 36.08760 36.08928 0.00000 0.00000 0.00000 36.08798 36.08924 36.08927
7 140 34.11076 34.10509 34.10680 0.00000 0.00000 0.00000 34.10547 34.10675 34.10678
8 60 45.63658 45.65571 45.67313 45.67083 45.67630 45.64789 45.67962 45.68269 45.68268
8 70 39.02327 39.06153 39.08246 39.08357 39.08403 39.05511 39.08773 39.09204 39.09194
8 80 33.14427 33.18061 33.20407 33.21023 33.20378 33.17749 33.20755 33.21310 33.21311
8 90 27.99941 28.00525 6.42577 28.04268 28.02814 49.38166 28.03168 28.03834 28.03846
8 100 23.54710 23.50352 23.52908 23.54804 23.52537 23.51052 23.52848 23.53610 23.53631
8 110 19.72258 19.62733 19.65265 19.67728 19.64767 19.63984 19.65019 19.65853 19.65872
8 120 16.45462 16.31913 16.34356 16.37220 16.33765 16.33672 16.33953 16.34832 16.34860
8 130 13.67520 13.51728 13.54033 13.57101 13.53384 13.53918 13.53508 13.54407 13.54442
8 140 11.32274 11.16002 11.18137 11.21220 11.17461 11.18529 11.17525 11.18423 11.18446
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Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral FFT
9 60 43.79142 43.81443 43.84460 43.84463 43.84215 43.80885 43.84320 43.84951 43.84949
9 70 36.53173 36.55193 36.58869 36.59579 36.58333 36.54780 36.58210 36.59256 36.59245
9 80 30.11082 30.08057 30.12140 30.13917 30.11291 30.07990 30.10864 30.12350 30.12358
9 90 24.55595 24.45411 24.49640 24.52395 24.48521 24.45808 24.47781 24.49653 24.49677
9 100 19.82714 19.66996 19.71142 19.74449 19.69840 19.67878 19.68837 19.70981 19.71017
9 110 15.85956 15.68074 15.71966 15.75341 15.70580 15.69381 15.69395 15.71678 15.71709
9 120 12.58009 12.40945 12.44482 12.47569 12.43099 12.42571 12.41816 12.44118 12.44161
9 130 9.90942 9.76410 9.79553 9.82175 9.78234 9.78232 9.76925 9.79152 9.79200
9 140 7.76384 7.64930 7.67680 7.69799 7.66460 7.66826 7.65181 7.67269 7.67301
10 60 55.40478 55.40389 55.40331 0.00000 0.00000 0.00000 55.40388 55.40432 55.40431
10 70 51.14487 51.14383 51.14433 0.00000 0.00000 0.00000 51.14382 51.14430 51.14424
10 80 47.35810 47.35692 47.35745 0.00000 0.00000 0.00000 47.35692 47.35742 47.35738
10 90 43.97575 43.97447 43.97501 0.00000 0.00000 0.00000 43.97446 43.97498 43.97497
10 100 40.94105 40.93968 40.94024 0.00000 0.00000 0.00000 40.93968 40.94020 40.94021
10 110 38.20691 38.20548 38.20604 0.00000 0.00000 0.00000 38.20547 38.20600 38.20602
10 120 35.73406 35.73257 35.73313 0.00000 0.00000 0.00000 35.73257 35.73310 35.73313
10 130 33.48955 33.48802 33.48858 0.00000 0.00000 0.00000 33.48802 33.48854 33.48859
10 140 31.44557 31.44401 31.44456 0.00000 0.00000 0.00000 31.44401 31.44453 31.44457
11 60 78.69712 78.69708 78.69710 78.69708 78.69710 77.85372
11 70 77.14730 77.14726 77.14728 77.14726 77.14728 76.65877
11 80 75.73489 75.73485 75.73486 75.73485 75.73486 75.43154
11 90 74.43584 74.43579 74.43581 74.43579 74.43581 74.23713
11 100 73.23221 73.23217 73.23219 73.23217 73.23219 73.09640
11 110 72.11024 72.11019 72.11021 72.11019 72.11021 72.01415
11 120 71.05903 71.05898 71.05900 71.05898 71.05900 70.98905
11 130 70.06987 70.06981 70.06983 70.06981 70.06983 70.01765
11 140 69.13558 69.13553 69.13555 69.13553 69.13555 69.09581
12 60 42.13739 42.33839 42.52323 42.22891 42.23686 42.19614 42.21561 42.23249 42.23245
12 70 33.88598 34.04443 34.24842 33.95846 33.94830 33.90020 33.87595 33.94073 33.94052
12 80 26.50817 26.45817 26.62575 26.44454 26.41143 26.37217 26.29998 26.40711 26.40725
12 90 20.09173 19.90351 20.03422 19.93497 19.90143 19.87370 19.79288 19.90139 19.90188
12 100 14.71954 14.54685 14.64079 14.58468 14.56256 14.54534 14.47973 14.56468 14.56537
12 110 10.47609 10.36842 10.43118 10.39900 10.38619 10.37712 10.32886 10.38888 10.38944
12 120 7.29432 7.23531 7.27675 7.25778 7.24994 7.24596 7.21039 7.25241 7.25313
12 130 4.99603 4.96285 4.99131 4.97928 4.97352 4.97211 4.94453 4.97550 4.97623
12 140 3.37934 3.35904 3.38006 3.37129 3.36614 3.36565 3.34271 3.36757 3.36798
13 60 43.27851 43.34283 43.38191 43.39178 43.39095 43.37332 43.39776 43.39600 43.39597
13 70 35.73319 35.78936 35.84290 35.85264 35.84440 35.82329 35.84821 35.85065 35.85051
13 80 29.07916 29.00799 29.07222 29.08611 29.06597 29.04465 29.06133 29.07288 29.07296
13 90 23.32998 23.10383 23.17381 23.19174 23.16120 23.14257 23.14491 23.16841 23.16870
13 100 18.42426 18.11521 18.18580 18.20360 18.16874 18.15454 18.14153 18.17594 18.17638
13 110 14.31557 14.01456 14.08129 14.09515 14.06201 14.05274 14.02747 14.06890 14.06927
13 120 10.96488 10.72387 10.78383 10.79258 10.76434 10.75957 10.72684 10.77067 10.77119
13 130 8.30718 8.13606 8.18810 8.19251 8.16974 8.16847 8.13283 8.17537 8.17594
13 140 6.24704 6.13435 6.17857 6.18003 6.16198 6.16302 6.12792 6.16684 6.16720
14 60 42.64420 42.80838 42.88868 42.84842 42.84956 42.85995 42.86585 42.84557 42.84553
14 70 34.80701 34.89491 35.01907 34.91794 34.92673 34.94175 34.93394 34.92310 34.92291
14 80 27.91328 27.71754 27.87157 27.73154 27.75133 27.76813 27.71872 27.74854 27.74864
14 90 21.91507 21.46945 21.63531 21.49342 21.51905 21.53440 21.43068 21.51633 21.51672
14 100 16.74749 16.26744 16.43058 16.30674 16.33023 16.34254 16.20079 16.32715 16.32772
14 110 12.48471 12.11025 12.25968 12.15665 12.17513 12.18421 12.03125 12.17188 12.17235
14 120 9.16514 8.89887 9.03103 8.94202 8.95721 8.96378 8.81755 8.95411 8.95474
14 130 6.67717 6.48464 6.60148 6.51743 6.53169 6.53686 6.40513 6.52901 6.52967
14 140 4.83904 4.70760 4.81217 4.72677 4.74100 4.74578 4.63201 4.73889 4.73928
15 60 42.46311 42.65503 42.74828 42.68804 42.69200 42.71938 42.71386 42.67936 42.67933
15 70 34.49097 34.61020 34.76641 34.59165 34.61874 34.66338 34.63753 34.60842 34.60819
15 80 27.45258 27.25782 27.45772 27.19536 27.25646 27.31063 27.22600 27.25110 27.25118
15 90 21.29960 20.81798 21.02896 20.76514 20.84195 20.89244 20.73243 20.83743 20.83783
15 100 15.94175 15.45619 15.65780 15.44629 15.50926 15.54504 15.34845 15.50289 15.50350
15 110 11.50968 11.20358 11.36928 11.22692 11.26673 11.29229 11.10447 11.25904 11.25956
15 120 8.11505 7.96315 8.08929 7.99679 8.02093 8.03422 7.88435 8.01325 8.01394
15 130 5.64974 5.57270 5.66519 5.60094 5.61869 5.62349 5.51079 5.61196 5.61268
15 140 3.90326 3.85511 3.92362 3.87109 3.88828 3.88853 3.80276 3.88289 3.88331

Table 7: Vanilla Call Option Values: St0 = 100, r = 0.05, q = 0.02, σCGMY = 0.2, T = 0.5

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral FFT
1 60 40.49538 40.59943 40.56459 40.57386 40.76381 40.37188 40.59604 40.61719 40.61713
1 70 30.56892 31.34783 30.81433 30.97008 31.36401 30.10059 31.04294 31.10737 31.10683
1 80 21.45264 22.97711 26.06216 21.89413 22.30212 20.75596 21.82015 22.01232 22.01224
1 90 14.72190 14.51644 16.65821 14.30032 14.08509 13.18957 13.55025 13.94213 13.94312
1 100 8.45546 7.67883 8.42999 7.95176 7.69909 7.39768 7.40432 7.71201 7.71378
1 110 3.66404 3.63917 3.85791 3.72022 3.68137 3.63015 3.58279 3.70632 3.70761
1 120 1.53626 1.55277 1.63450 1.58614 1.56195 1.55776 1.51207 1.57232 1.57347
1 130 0.56965 0.63062 0.69420 0.61965 0.61070 0.59523 0.56014 0.60774 0.60847
1 140 0.17889 0.27075 0.33297 0.21516 0.23791 0.19511 0.19014 0.22314 0.22337
2 60 40.88493 41.05839 41.31669 40.89016 40.93764 40.74327 40.90933 40.92844 40.92840
2 70 31.59159 31.99909 32.29494 31.84320 31.90295 31.67737 31.86924 31.90505 31.90478
2 80 23.41541 23.64093 23.89992 23.63751 23.62642 23.41980 23.58948 23.64341 23.64357
2 90 16.83038 16.45279 16.65605 16.64653 16.50033 16.35333 16.46424 16.52948 16.53017
2 100 11.36153 10.77487 10.92088 11.01861 10.83031 10.75303 10.79807 10.86205 10.86310
2 110 7.00318 6.65562 6.75181 6.82385 6.69424 6.67025 6.66762 6.72063 6.72146
2 120 4.01957 3.90062 3.96178 3.99039 3.92363 3.92656 3.90270 3.94229 3.94327
2 130 2.21075 2.19090 2.23112 2.23546 2.20404 2.21314 2.18763 2.21595 2.21681
2 140 1.18227 1.19519 1.22365 1.21456 1.20175 1.20693 1.18865 1.20862 1.20902

Continued on next page

56



Table 7 – continued from previous page

Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral FFT
3 60 40.80614 41.01977 41.32001 40.81585 40.87432 40.64895 40.83710 40.85616 40.85611
3 70 31.38372 31.90212 32.30698 31.66967 31.75040 31.48006 31.70212 31.74113 31.74082
3 80 23.11673 23.40445 23.75485 23.34453 23.34207 23.09200 23.28504 23.34896 23.34911
3 90 16.50009 16.05080 16.31346 16.25224 16.08267 15.90705 16.02581 16.10717 16.10791
3 100 10.91865 10.28494 10.46413 10.54347 10.34088 10.25061 10.29224 10.37177 10.37291
3 110 6.49622 6.18238 6.29315 6.34396 6.22268 6.19456 6.18606 6.24888 6.24977
3 120 3.59523 3.51278 3.57934 3.59194 3.53642 3.53672 3.51051 3.55456 3.55557
3 130 1.91200 1.91078 1.95330 1.94771 1.92378 1.92864 1.90512 1.93487 1.93572
3 140 0.98988 1.01186 1.04196 1.02485 1.01737 1.01707 1.00336 1.02330 1.02369
4 60 40.58412 40.56909 40.60454 40.99690 40.58583 40.65368 40.65363
4 70 31.03219 31.56511 31.42442 31.18652 31.53264 30.92035 31.20156 31.32535 31.32501
4 80 22.57122 22.95198 23.55649 22.71975 22.79712 22.35455 22.56480 22.71042 22.71067
4 90 15.67129 15.37753 15.65866 15.53331 15.36987 15.16874 15.25316 15.37075 15.37168
4 100 10.04948 9.67656 9.82284 9.85816 9.70335 9.61832 9.64253 9.72469 9.72596
4 110 5.98307 5.76791 5.86800 5.89532 5.79122 5.74031 5.74798 5.81102 5.81193
4 120 3.37258 3.30965 3.41030 3.38444 3.32112 3.25645 3.27508 3.33256 3.33350
4 130 1.80781 1.88708 2.01213 1.87988 1.87016 1.77033 1.81063 1.86704 1.86780
4 140 0.93865 1.11944 1.28591 1.01439 1.06245 0.91915 0.98514 1.03875 1.03908
5 60 40.99521 41.08507 41.21646 41.04001 41.04912 40.96433 41.05988 41.06629 41.06625
5 70 31.77218 32.14200 32.31589 32.11311 32.13469 32.01730 32.14308 32.15820 32.15794
5 80 23.81549 23.96082 24.15192 24.02294 23.99782 23.87281 23.99505 24.02537 24.02553
5 90 17.44138 16.91935 17.10134 17.12473 16.99003 16.88866 16.96979 17.01993 17.02059
5 100 12.04579 11.31303 11.46966 11.56832 11.38708 11.32428 11.35102 11.41651 11.41751
5 110 7.65138 7.20370 7.32805 7.40059 7.26202 7.23239 7.21966 7.28745 7.28825
5 120 4.57561 4.41424 4.50992 4.53669 4.45518 4.44285 4.41655 4.47491 4.47584
5 130 2.64679 2.63994 2.71495 2.70615 2.66654 2.65676 2.63667 2.68062 2.68145
5 140 1.50888 1.56458 1.62578 1.59067 1.57917 1.56463 1.55867 1.58868 1.58908
6 60 41.47347 41.50173 41.55882 41.51189 41.51966 41.45514 41.52360 41.53300 41.53297
6 70 32.94456 33.04037 33.10842 33.07630 33.07563 33.00263 33.07755 33.09335 33.09322
6 80 25.49885 25.50368 25.57589 25.58113 25.54723 25.48024 25.54579 25.56817 25.56839
6 90 19.29660 19.09573 19.16597 19.21474 19.13832 19.08757 19.13302 19.16049 19.16102
6 100 14.21648 13.90071 13.96445 14.03612 13.93712 13.90549 13.92854 13.95843 13.95914
6 110 10.16079 9.87528 9.93015 9.99817 9.90439 9.88886 9.89392 9.92336 9.92392
6 120 7.06872 6.87925 6.92496 6.97506 6.90210 6.89689 6.89128 6.91807 6.91877
6 130 4.82297 4.72329 4.76081 4.79110 4.74139 4.74081 4.73144 4.75436 4.75506
6 140 3.25272 3.21245 3.24317 3.25742 3.22704 3.22695 3.21860 3.23732 3.23772
7 60 44.74990 44.74123 44.75286 36.49035 35.54825 35.53293 44.74537 44.75188 44.75187
7 70 37.98902 37.96894 37.98208 31.01758 30.39312 30.37934 37.97306 37.98092 37.98091
7 80 32.11752 32.08424 32.09831 26.27078 25.80998 25.79848 32.08816 32.09704 32.09717
7 90 27.08265 27.03776 27.05233 22.20287 21.82290 21.81374 27.04142 27.05097 27.05119
7 100 22.80456 22.75178 22.76652 18.74699 18.40514 18.39796 22.75517 22.76510 22.76538
7 110 19.19299 19.13664 19.15131 15.82888 15.50460 15.49887 19.13978 19.14987 19.15008
7 120 16.15764 16.10156 16.15026 13.37475 13.05939 13.02587 16.10449 16.11454 16.11484
7 130 13.61395 13.56099 13.57509 11.31581 11.00684 11.00242 13.56375 13.57363 13.57396
7 140 11.48585 11.43782 11.45151 9.59042 9.28823 9.28381 11.44045 11.45006 11.45027
8 60 41.11188 41.29939 41.53382 41.21439 41.22608 41.08627 41.24689 41.25636 41.25632
8 70 31.64231 32.41954 32.71502 32.34706 32.39022 32.20183 32.41462 32.43339 32.43310
8 80 23.73866 24.22086 24.53941 24.24996 24.26996 24.06338 24.29093 24.32335 24.32339
8 90 17.86121 17.03071 17.32744 17.30879 17.15693 16.98015 17.16701 17.21637 17.21688
8 100 12.63233 11.17141 11.41734 11.63616 11.32107 11.21305 11.31562 11.38028 11.38119
8 110 7.62129 6.80463 6.98627 7.18129 6.91720 6.88669 6.89800 6.96785 6.96868
8 120 3.98859 3.83905 3.95762 4.02323 3.90102 3.92657 3.87610 3.93781 3.93889
8 130 1.97819 2.00630 2.08063 2.08280 2.03544 2.08160 2.01117 2.05909 2.06010
8 140 0.94813 0.97806 1.02911 1.02057 0.99021 1.03067 0.96703 1.00458 1.00506
9 60 40.70454 40.98799 41.36666 40.75585 40.78982 40.58885 40.78289 40.79209 40.79204
9 70 30.98888 31.80854 32.47435 31.45534 31.54144 31.24622 31.51755 31.54288 31.54248
9 80 22.53227 23.10581 23.79647 22.86064 22.89357 22.55725 22.83009 22.89242 22.89246
9 90 16.06152 15.34187 15.87846 15.52497 15.30283 15.03624 15.19627 15.31667 15.31746
9 100 10.21915 9.22824 9.58975 9.57302 9.30152 9.15812 9.18136 9.33362 9.33497
9 110 5.43125 5.09259 5.31566 5.29078 5.15606 5.10369 5.05156 5.18612 5.18719
9 120 2.68721 2.63408 2.79420 2.73130 2.65498 2.62835 2.56329 2.67149 2.67260
9 130 1.22243 1.34622 1.50225 1.34100 1.31358 1.26791 1.22984 1.31266 1.31350
9 140 0.50711 0.72672 0.91152 0.62323 0.65092 0.57294 0.58356 0.63615 0.63647
10 60 44.06814 44.06399 44.07097 -6252.45562 48025.93009 47101.19934 44.06336 44.06846 44.06845
10 70 37.09507 37.08750 37.09432 1017.29092 37.08712 37.09230 37.09230
10 80 31.04217 31.03171 31.03811 -1590.30899 705.39436 672.97093 31.03148 31.03648 31.03664
10 90 25.86740 25.85494 25.86077 304.87056 -1718.49656 -1738.74654 25.85478 25.85946 25.85971
10 100 21.49358 21.48006 21.48528 466.50682 552.11719 555.75499 21.47996 21.48422 21.48453
10 110 17.82765 17.81392 17.81852 -848.64049 -89.18009 -89.92025 17.81385 17.81767 17.81791
10 120 14.77360 14.76029 14.76430 -508.02270 -7.67934 -7.71929 14.76024 14.76361 14.76394
10 130 12.24003 12.22757 12.23105 -456.40847 10.62208 10.66940 12.22753 12.23049 12.23085
10 140 10.14417 10.13279 10.13579 -323.87679 2.33371 2.34428 10.13276 10.13535 10.13558
11 60 57.86810 57.86764 57.86784 0.00000 0.00000 0.00000 57.86764 57.86783 57.86782
11 70 53.73960 53.73908 53.73929 0.00000 0.00000 0.00000 53.73907 53.73929 53.73923
11 80 50.07340 50.07282 50.07306 0.00000 0.00000 0.00000 50.07282 50.07305 50.07301
11 90 46.79767 46.79705 46.79729 0.00000 0.00000 0.00000 46.79704 46.79728 46.79727
11 100 43.85470 43.85404 43.85429 0.00000 0.00000 0.00000 43.85403 43.85428 43.85428
11 110 41.19763 41.19693 41.19719 0.00000 0.00000 0.00000 41.19693 41.19718 41.19719
11 120 38.78801 38.78729 38.78755 0.00000 0.00000 0.00000 38.78729 38.78754 38.78757
11 130 36.59401 36.59327 36.59353 0.00000 0.00000 0.00000 36.59327 36.59352 36.59356
11 140 34.58901 34.58826 34.58852 0.00000 0.00000 0.00000 34.58826 34.58851 34.58854
12 60 40.46260 40.54385 40.51177 40.52541 40.53888 40.37253 40.54152 40.53356 40.53350
12 70 30.64357 30.99517 30.70156 30.84375 30.91819 30.50410 30.88370 30.87664 30.87600
12 80 21.08989 22.32422 24.13700 21.45197 21.61423 20.77819 21.36314 21.49013 21.48997
12 90 13.44632 13.84417 17.25388 13.27342 13.19488 12.64207 12.45201 13.09009 13.09127
12 100 7.10171 6.76120 7.45497 6.80471 6.75390 6.63929 6.40582 6.75347 6.75557
12 110 2.97468 2.92119 3.10458 2.95135 2.93262 2.90774 2.80635 2.93613 2.93752
12 120 1.08162 1.21002 1.50578 1.15137 1.11614 1.06515 0.89170 1.10197 1.10306
12 130 0.22728 0.54002 0.63039 0.37350 0.41475 0.23740 0.23898 0.37549 0.37609
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Set K Merton-0 Merton-t̂ Merton-Higher Kou-0 Kou-t̂ Kou-Higher Gaussian Integral FFT
12 140 0.02507 0.12296 -0.06527 0.10650 0.15971 -0.01256 0.08781 0.12548 0.12563
13 60 40.56597 40.87540 41.18584 40.73374 40.72997 40.69348 40.75910 40.74929 40.74924
13 70 30.82108 31.60753 32.17776 31.35251 31.36623 31.28315 31.41522 31.39432 31.39383
13 80 22.22861 22.80210 23.63372 22.49836 22.49636 22.34529 22.51804 22.50943 22.50935
13 90 15.62680 14.79658 15.62004 14.75860 14.61666 14.44798 14.49362 14.61347 14.61434
13 100 9.39971 8.35748 8.93894 8.56021 8.41528 8.31374 8.15010 8.42635 8.42798
13 110 4.46585 4.23768 4.58502 4.37432 4.31742 4.27743 4.09185 4.33222 4.33344
13 120 2.06212 2.04891 2.29628 2.09120 2.04335 2.01648 1.88843 2.04854 2.04968
13 130 0.78900 1.03170 1.28647 0.95032 0.94138 0.90031 0.85900 0.93719 0.93794
13 140 0.27055 0.55645 0.79688 0.42467 0.44144 0.39850 0.41458 0.43779 0.43804
14 60 40.45530 40.82603 41.23054 40.67913 40.68108 40.68936 40.70226 40.67187 40.67182
14 70 30.75659 31.49975 32.40004 31.18315 31.18487 31.20476 31.24401 31.16492 31.16432
14 80 21.80348 22.59232 24.32640 21.97668 21.98810 22.06480 22.06957 21.98177 21.98160
14 90 14.85360 14.34569 16.38080 13.64521 13.72977 13.87573 13.47524 13.75113 13.75220
14 100 8.31765 7.45857 8.59424 7.39562 7.45298 7.53325 6.74361 7.45235 7.45430
14 110 3.98840 3.56345 4.34886 3.49531 3.54567 3.59500 2.97664 3.54408 3.54543
14 120 1.67787 1.93356 3.13709 1.51164 1.55277 1.63440 1.27355 1.56693 1.56802
14 130 0.42153 1.14987 2.38245 0.70525 0.69915 0.76612 0.66913 0.70750 0.70813
14 140 0.04867 0.71882 1.62870 0.37114 0.36003 0.39128 0.39474 0.35610 0.35628
15 60 40.45460 40.80642 41.22056 40.67062 40.69268 40.65262 40.65257
15 70 30.76641 31.45989 32.43688 31.14740 31.15838 31.20216 31.20912 31.10347 31.10284
15 80 21.68349 22.52354 24.63609 21.81018 21.85884 22.01463 21.96428 21.83058 21.83036
15 90 14.54716 14.23723 17.06597 13.16433 13.39743 13.86884 13.17661 13.47334 13.47441
15 100 7.88695 7.11795 8.48602 6.93473 7.07152 7.29194 6.27480 7.07502 7.07705
15 110 3.19498 3.08974 3.59568 3.10786 3.16401 3.23703 2.76702 3.14892 3.15032
15 120 1.29717 1.37918 1.95122 1.07075 1.21113 1.29814 0.92249 1.22537 1.22650
15 130 0.30796 0.70065 1.43753 0.42109 0.42479 0.53673 0.35707 0.44626 0.44689
15 140 0.03145 0.38147 0.85693 0.19367 0.16541 0.20595 0.17399 0.16873 0.16890

K Merton−t̂ Kou−t̂ Gaussian Integral FFT Carr/Madan

10 90.14890 −2626.36238 90.14890 90.14890 90.14884 90.15710
20 80.29921 80.38055 80.29897 80.29900 80.29893 80.32790
30 70.46649 70.45811 70.46088 70.46119 70.46092 70.51780
40 60.68652 60.67086 60.67513 60.67649 60.67611 60.73970
50 51.03891 51.03127 51.03827 51.04220 51.04167 51.04820
60 41.69384 41.71241 41.72215 41.73070 41.73067 41.61040
70 32.91066 32.96102 32.97227 32.98735 32.98716 32.73030
80 24.99257 25.06486 25.07546 25.09790 25.09808 24.76880
90 18.21377 18.29067 18.29827 18.32707 18.32764 18.01840
100 12.74241 12.81007 12.81327 12.84556 12.84640 12.61910
110 8.59185 8.64534 8.64450 8.67657 8.67725 8.54280
120 5.62527 5.66622 5.66311 5.69188 5.69272 5.62780
130 3.61059 3.64238 3.63896 3.66277 3.66357 3.63870
140 2.29377 2.31908 2.31649 2.33504 2.33546 2.32950
150 1.45395 1.47432 1.47290 1.48672 1.48753 1.48790
160 0.92512 0.94134 0.94095 0.95094 0.95149 0.95370
170 0.59347 0.60596 0.60630 0.61340 0.61381 0.61590
180 0.38510 0.39419 0.39495 0.39995 0.40007 0.40180
190 0.25342 0.25947 0.26042 0.26395 0.26399 0.26520
200 0.16945 0.17293 0.17392 0.17641 0.17644 0.17720

Table 8: Carr & Madan Comparison: Cup, Cdown = 2,M = 5, G = 10, Yup, Ydown = 0.5.

St0 = 100, r = 0.03, q = 0, σCGMY = 0, T = 0.5.
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St0 Kou−t̂ Gaussian Integral Sepp

90 4.35986 4.35986 4.35983 4.35990
100 9.22701 9.22701 9.22701 9.22700
110 15.96130 15.96130 15.96130 15.96130

Table 9: Sepp Comparison: λ = 0, η1 = 10, η2 = 10, p = 0.5.

K = 100, r = 0.05, q = 0.02, σKou = 0.2, T = 1.

St0 Merton−t̂ Kou−t̂ Gaussian Integral Sepp

90 8.16943 8.20488 8.18033 8.20489 8.20490
100 13.31579 13.35051 13.31847 13.35052 13.35050
110 19.75254 19.78597 19.75597 19.78597 19.78600

Table 10: Sepp Comparison: λ = 3, η1 = 10, η2 = 10, p = 0.5.

K = 100, r = 0.05, q = 0.02, σKou = 0.2, T = 1.

St0 Merton−t̂ Kou−t̂ Gaussian Integral Sepp

90 10.21568 10.24608 10.23856 10.24780 10.24780
100 15.51381 15.54394 15.53377 15.54617 15.54620
110 21.89490 21.92395 21.91412 21.92674 21.92670

Table 11: Sepp Comparison: λ = 5, η1 = 10, η2 = 10, p = 0.5.

K = 100, r = 0.05, q = 0.02, σKou = 0.2, T = 1.
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K T Merton−t̂ Kou−t̂ Gaussian Integral FFT Rogers/Zane

exp(−0.05) 5 0.054319 0.050942 0.054645 0.054700 0.054701 0.054600
exp(−0.05) 2 0.043611 0.044515 0.044559 0.044851 0.044854 0.046600
exp(−0.05) 1 0.030930 0.031280 0.030979 0.031874 0.031896 0.031000
exp(−0.05) 0.5 0.021937 0.019459 0.017936 0.019929 0.019948 0.017900
exp(−0.05) 0.25 0.020205 0.012511 0.008406 0.010976 0.011351 0.008400

1 5 0.067166 0.064047 0.067515 0.067534 0.067526 0.067500
1 2 0.059433 0.060401 0.060428 0.060629 0.060632 0.006040
1 1 0.046673 0.047520 0.046897 0.047770 0.047726 0.046800
1 0.5 0.034320 0.034229 0.031090 0.033918 0.033762 0.030900
1 0.25 0.024553 0.023448 0.014748 0.018438 0.021721 0.014500

exp(0.05) 5 0.082574 0.079724 0.082936 0.082809 0.082811 0.082800
exp(0.05) 2 0.111296 0.111138 0.104836 0.081064 0.081064 0.080800
exp(0.05) 1 0.070462 0.071545 0.070784 0.071447 0.071421 0.070400
exp(0.05) 0.5 0.062495 0.061827 0.059267 0.062069 0.062094 0.059200
exp(0.05) 0.25 0.064469 0.057556 0.051882 0.056939 0.056434 0.051900

Table 12: Rogers & Zane Comparison: Cup, Cdown = 1, G =M = 7.071068, Yup, Ydown = 0.

St0 = 1, r = 0.05, q = 0, σCGMY = 0.

K T GME BS Carr/Madan GME

60.65 0.5 40.26000 40.26000 40.25690
81.87 0.5 20.20766 20.20766 20.20500
90.48 0.5 13.45126 13.45126 13.44860
110.52 1 7.08109 7.08109 7.08205
122.14 1 4.00481 4.00481 4.00475
174.87 1 0.20056 0.20056 0.36594
271.82 1 0.00049 0.00049 0.00049

Table 13: Carr & Madan Comparison: St0 = 100, r = 0.03, q = 0, σ = 0.25.
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Set K GME MME Integral FFT

1 60 42.13184 42.58585 42.14525 42.14521
1 70 32.95650 33.63741 33.05063 33.05031
1 80 24.51777 25.28649 24.65855 24.65868
1 90 17.25947 17.86288 17.39069 17.39137
1 100 11.48019 11.71029 11.57308 11.57412
1 110 7.22857 7.08573 7.28809 7.28892
1 120 4.32846 4.02725 4.37054 4.37151
1 130 2.48097 2.23763 2.51624 2.51712
1 140 1.37147 1.23786 1.40316 1.40358

7 60 50.70991 50.64047 50.78860 50.78859
7 70 45.18795 45.06467 45.26325 45.26321
7 80 40.34447 40.18704 40.41348 40.41351
7 90 36.09698 35.92211 36.15856 36.15863
7 100 32.36908 32.18914 32.42309 32.42319
7 110 29.09240 28.91573 29.13928 29.13937
7 120 26.20697 26.03871 26.24741 26.24754
7 130 23.66073 23.50375 23.69552 23.69568
7 140 21.40880 21.26437 21.43871 21.43882

10 60 49.61539 49.49963 49.65147 49.65146
10 70 43.85913 43.6504 43.89737 43.89734
10 80 38.81904 38.5523 38.85678 38.85682
10 90 34.41361 34.11909 34.44924 34.44933
10 100 30.56416 30.26414 30.59685 30.59697
10 110 27.19856 26.90769 27.228 27.2281
10 120 24.25256 23.97948 24.27873 24.27888
10 130 21.66984 21.41891 21.69291 21.69309
10 140 19.40155 19.1743 19.42177 19.4219

Table 14: GME, MME Comparison: St0 = 100, r = 0.03, q = 0, σCGMY = 0.2, T = 1.
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Appendix C : Rogers & Zane’s Graphs

• Results for ST = 1,K = exp(0.05), r = 0.05, q = 0, σCGMY = 0.
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Figure 4: Saddlepoint Values for Rogers & Zane Comparison: Cup, Cdown = 1,
G,M = 7.071068.
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• Results for ST = 1,K = exp(0.05), r = 0.1, q = 0.02, σCGMY = 0.
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Figure 5: Saddlepoint Values for Rogers & Zane Comparison: Cup, Cdown = 1,
G,M = 7.071068.

63



• Results for ST = 1,K = exp(0.05), r = 0.05, q = 0, σCGMY = 0.
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Figure 6: Saddlepoint Values for Rogers & Zane Comparison: Cup, Cdown = 0.833333,
G = 0.816660,M = 40.816660.

64



0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Maturity (Years)

V
an

ill
a 

O
pt

io
n 

P
ric

es

 

 

FFT

Merton

Kou

Gaussian

(a) Saddlepoint Option Values

0 0.5 1 1.5 2 2.5
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Maturity (Years)

s

 

 
Gaussian

(b) Plot of s: Formula (3.1)

Figure 7: Saddlepoint Values for Rogers & Zane Comparison: Cup, Cdown = 2, G = 5,
M = 10,Yup, Ydown = 0.5.
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Figure 8: Saddlepoint Values for Rogers & Zane Comparison: Cup, Cdown = 1,
G,M = 7.071068.
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Appendix D : Kou Model’s Numerical Instability

We now investigate into why the Kou base distribution produces unreliable results for
certain parameter sets. In order to facilitate this analysis, we consider the Saddlepoint
approximation results obtained using the Kou model for two sets of CGMY parameters:
set 1, where the Kou model produces relatively good results, and set 11, where the Kou
model breaks down. The table below shows the BCON option price (computed using the
original moment matching method) and the corresponding cdf and pdf computed for these
two CGMY parameter sets, where St0 = 1,K = 1, r = 0.05, q = 0.02, σCGMY = 0.2, T = 1 :

Set cdf pdf BCON Option Price

1 0.481401 1.614352 0.493309
11 1 6.22e− 67 1.13e− 71

Table 15: Comparison Between BCON Option Prices For Parameter Sets 1 and 11

The differences between the inputs for the Kou cdf for different parameter sets, are the
value that the cdf is being evaluated at, and the Kou parameters. For sets 1 and 11, this
information is given in the table below:

Set ybase λ η1 η2 p σKou
1 −3.32E − 06 0.993399 17.634409 5.935484 0.556920 0.211717
11 −3.22E − 05 239.775759 26.666667 13.333333 0.738796 1.242383

Table 16: Comparison Between Kou’s Parameter for Parameter Sets 1 and 11

One can see that the Kou parameters for parameter set 11, for which the erroneous results
are produced, are much more larger than that of parameter set 1. This indicates that the
underlying problem originates from the values of the Kou parameters that have been ob-
tained from either of the parameter attaining methods. However, it is necessary to confirm
this.

There are several individual components which are used to calculate the final comple-
mentary cdf for the Kou model (equation (2.1)). However, by delving into the different
components of the cdf function, one can see that the problem of the erroneous results orig-
inates with the values being computed from the Hh functions. As the Hh function is a
recursive function which starts from computing the standard Gaussian pdf and cdf evalu-
ated at a certain value, this suggests that the error originates from the initial value that is
input into the function. The Hh function is used twice in calculating the Kou cdf, and the
table below displays the initial values entered into the Hh function (for both runs of the
function), and the corresponding results from calculating the standard Gaussian pdf and
cdf functions evaluated at these values: (Note that when we calculate the cdf, we evaluate
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the standard Gaussian distribution at the negative of the input value).

Set Initial Value pdf cdf

1 3.91203 1.90E − 04 4.58E − 05
1 1.07812 0.223106 0.140490
11 30.49502 4.63E − 203 1.52E − 204
11 19.20032 3.54E − 81 1.84E − 82

Table 17: Comparison Between Standard Gaussian pdf and cdf for Kou Parameters

One can see that for set 11, since the cdf and pdf values are very small, this would impact
on the final output from the recursive Hh function. Therefore, our intuition was correct
in that the Kou parameters attained from the moment matching method were causing the
Kou cdf function to produce unreliable results.

The Kou parameters are based on calculating the ratio of the up components and ratio
of the down components for the third and fourth derivatives of the CGMY cumulant func-
tion (see Section 3.2). As this ratio is larger for set 11 than for set 1, this would in turn
produce Kou parameters which are larger. Since the method of obtaining the Kou pa-
rameters didn’t involve selecting a pre-determined Kou parameter value (as it did for the
Merton model), and Kou’s cumulant generating function naturally splits into up and down
components, we can’t alter the Kou or CGMY values that determine the Kou parameters.
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