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A multi-factor jump-diffusion 

model for commodities

This presentation draws on my papers “A multi-

factor jump-diffusion model for Commodities”

(submitted for publication), “Commodity 

Options Optimised” (Risk Magazine, May 2006, 

p72-77) and “Pricing a class of exotic 

commodity options in a multi-factor jump-

diffusion model”.



Fourier Transform methods

• Using Fourier Transform methods, can 

price (see Heston (1993), Duffie, Pan and 

Singleton (2000)):

• Standard European options

• Binary options

- provided we know the characteristic 

function in analytical form.



• Our aim is to price a class of simple (European-

style) exotic options which include options on:

• Difference (or ratio) of prices (either spot or 

futures prices) of two different commodities.

• Difference (or ratio) of prices of two futures 

contracts, either to different tenors or at different 

calendar times (eg cliquet type), on a single 

underlying commodity

• And some generalisations of the above.



Key Assumptions

• We assume the market is frictionless, (ie no bid-

offer spreads, continuous trading is possible, etc) 

and arbitrage-free.

• No arbitrage  => existence of an equivalent 

martingale measure (EMM).

• In this talk, we work exclusively under the EMM 

(or an EMM – it might not be unique).

• Note futures prices are martingales under the 

EMM. (Cox et al. (1981)).



Commodity prices  

• Consider two (arbitrary) commodities, labelled 1 and 2 

on which there are correspondingly two futures 

contracts. We denote the futures price of Commodity   

at time        to time         (ie the futures contract, 

into which Commodity        is deliverable, matures at 

time        ) by                 . 
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A class of exotic commodity options

• Our aim is to price a European-style option 

whose payoff is the greater of zero and a 

particular function involving the futures prices 

at times         and        of the futures contracts on 

Commodity 1 and Commodity 2 respectively.

• Choose                  (arbitrarily)

• The payoff is known at time          but is paid at 

(a possibly later) time        . Note                        .
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A class of exotic commodity options

• More mathematically, we price a European-

style option whose payoff is:

at time              

where         is a constant which might, for 

example, account for different units of 

measurement.                                              
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A class of exotic commodity options

• Also             if the option is a call and    

if the option is a put. 

Note        and        are constants (need not be 

integers).
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Payoff again

• Payoff at time          

• Need                         ,                ,

• Why consider this (slightly obscure) form?

( ) ( )[ ]
( )[ ] 


























 −
0,

,

,,
max

2,22,12

2,22,12

*

1,21,11

α

ε

η
TTH

TTHKTTH

payT

2,11,1 TTTpay ≥≥
1,11,2 TT ≥ 2,12,2 TT ≥



Spread options

• General form:

• Spread options on two different commodity 

futures:            ,

• Ratio spread or relative performance options on 

two different commodity futures:           ,

• For spread options on the spot, set
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Options on (slope of) futures curve

• General form:

• Could have                           ie actual same 

underlying commodity.

• Spread options on futures commodity curve:    

,                       

• Ratio spread or relative performance options on 

futures commodity curve:           ,
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Forward-start and cliquet options on futures

• General form:

• Could have                           ie actual same 

underlying commodity.

• Forward start options on futures prices:    

strictly <         ,                       

• Ratio forward start (ie single-leg cliquets) on 

futures prices:           

• strictly <          ,
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Forward-start and cliquet options on spot

• General form:

• Again                           ie actual same underlying 

commodity. Put               and

• Forward start options on spot:  Again  

strictly <         ,                       

• Ratio forward start (ie single-leg cliquets) on 

spot:  Again         

• strictly <          ,
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Return to general case

• General form:

• How can we price these options (obviously we 

can do them using Monte Carlo but maybe there 

is another way)?
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Stochastic Interest-rates

• We denote the (continuously compounded) risk-

free short rate, at time       , by         and we 

denote the price of a zero coupon bond, at time       

maturing at time      by              .  

• Interest-rates are assumed stochastic.
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• Define for times             and                  

The price of our option at time       is:
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• Which we can write as :

where 

(work these out explicitly in the paper)
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• And where

We can compute this with Fourier methods as follows:
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Define

And then write it in terms of its F.T.                ie

Can show    
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• Then

• Where we call                                       the 

“extended” characteristic function.
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“Extended” characteristic function

• Explicitly:
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Option price formula

• We have a formula for the option price, at time       :

• In fact, we can use symmetry to simplify the last term to 

an integral from 0 to infinity.

• We can always work out            and             explicitly if 

we can evaluate the “extended” characteristic function 

(by evaluating the “extended” characteristic function at 

z=i and z=0 respectively).
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Option price formula (again)

• Again, the option price, at time     , is :

• This formula is valid for any underlying model for 

which we can evaluate the “extended” characteristic 

function. 

• So this result should also be applicable for lots of  

different models. We’ll briefly look at one.
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Stochastic Interest-rates

• We denote the (continuously compounded) risk-free short 

rate, at time     , by        and we denote the price of a zero 

coupon bond, at time       maturing at time      by             .  

We assume that bond prices follow the extended Vasicek

(Hull-White, 1-factor Gaussian HJM) process, namely, 

• where 

are constants.

(Actually can also do multi-factor Gaussian models)
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Crosby (2005) model

• We work in the Crosby (2005) model which has 
the following main features: 

• It is a no-arbitrage model for futures (or 
forward) commodity prices which automatically 
fits the initial term structure of futures (or 
forward) commodity prices.

• Consistent with mean reversion in (log) spot 
prices. We show in the papers that it is possible 
for jumps (depending upon their specification) 
to also contribute to mean reversion.



Crosby (2005) model

• Allows for jumps of two different types:

The simpler type:

• Jumps which produce a parallel shift in the term 

structure of (log) futures commodity prices 

(more suitable for gold – “gold trades like a 

currency”).



Crosby (2005) model

The more complicated type:

• Jumps which allow long-dated futures contracts to 
jump by less than short-dated futures contracts 
(especially suitable for natural gas, electricity and other 
energy-related commodities because this is line with 
empirical observations). 

• This feature does not seem to have appeared in the 
literature before. 

• Jumps of this type also contribute to mean reversion. 

• Jumps of this type generate convenience yields which 
also have jumps (see papers for details).



• We label the two commodities, Commodity 1 and 

Commodity 2.

• Then for each      , we assume, as in the Crosby (2005) 

model, the dynamics of the futures prices of 

Commodity        under the EMM are:

• where                                      
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• is the number of Brownian factors (for 

example, 2 or 3).

• The form of the volatility functions                 can 

be somewhat general at this time but we assume 

they are deterministic (a specific form generates 

the effect of mean reversion, see paper).

• is the number of Poisson processes.

• The Brownian motions can all be correlated 

(correlations are assumed constants).

M

iK

( )TtkHi ,,σ



Jump processes

• For each         ,                     ,                 are 

the (assumed) deterministic intensity rates 

of the         Poisson processes. 

• for each           are non-negative 

deterministic functions. We call these the 

jump decay coefficient functions.

• are called the spot jump amplitudes.
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Assumptions about the spot jump 

amplitudes   
• Assumption 2.1 in the papers:

• The spot jump amplitudes are (known) constants. Call 

these spot jump amplitudes  

• In this case, the jump decay coefficient functions              

can be non-negative (but otherwise arbitrary) 

deterministic functions. 

• (As an aside, we show in the papers that when 

then jumps also contribute to mean reversion and

there is the effect that, after a jump, spot prices tend to 

revert back to a mean level.). 
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Assumptions about the spot jump 

amplitudes   

• Assumption 2.2 in the papers:

• In this case, the jump decay coefficient 

functions are set equal to zero.  ie

for all

In this case, the spot jump amplitudes can 

be random. Furthermore...
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• For different       , the spot jump amplitudes  are 

assumed to be independent of everything else. For 

each       ,                    but for a given         , we assume 

that, for this          , the spot jump amplitudes          are 

normally distributed with mean          and standard 

deviation          ,  and that the correlation between the 

spot jump amplitudes           and            is          . 
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• Note that the jump processes are modelled 

as common to both commodities but we 

can, of course, set a jump amplitude 

identically equal to zero to model the 

circumstance where one commodity jumps 

but the other one doesn’t.



Parallel shifts or exponentially dampened jumps

• Then by Ito:

(instantaneous diffusion variance)
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“Primary” and “daughter”

commodities

• It is common to talk about “primary” and 

“daughter” commodities. 

• A “primary” commodity might be a very liquid 

and actively traded commodity such as WTI or 

Brent crude oil. 

• A “daughter” commodity would then be a less 

actively traded blend of crude or a refined 

petroleum product such as heating oil, aviation 

fuel or gasoline. 



Spread options

• This gives rise to crack spread options.

• We might also be interested in dark spread 

options (electricity minus coal) or spark spread 

options (electricity minus natural gas).

• Or perhaps options on seemingly unrelated 

commodities eg natural gas and a base metal.



Spread options

• Our model has lots of flexibility in choosing, eg

diffusion volatilities                 . We give a 

specific example in the paper of specifications 

which could be used for spread options.

• Can price these (and other options) using the 

Fourier technique described earlier.
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• In the Crosby (2005) model, the “extended”

characteristic function is conceptually 

straightforward (although rather long-winded). 

Unfortunately, it is also not analytic (if any of 

the jumps are of the type of assumption 2.1) as it 

involves a number of (at least) one dimensional 

integrals of the form...



where

• Hence the option price involves at least a double 

(maybe even triple although, in practice, would 

choose              in a simple way eg constants) 

integral.

( ) ( ) ( ) ( )( )∫ −+−
2,1

1,2,1,12,2,2,2 ,,exp

T

t

mmmmm dsTsizTsizs φβφβεαελ

( ) ( ) 







−≡ ∫
T

s

mimi duubTs ,, exp,φ

( )ub mi,



• Either: Bite the bullet and do the double (or 

possibly a triple) integral.

• Or: There is a nice simplifying assumption 

that one can make which makes evaluation 

into just a single one-dimensional (ie very 

fast) integral.



• Assume that, for each Poisson Process of type of 
assumption 2.1:

• The intensity rate is a constant

• And for both commodities, the jump decay 
coefficient functions are constants.

• And assume that for commodities which have 
common jumps, then they also have the same 
jump decay coefficient value (it can be shown 
that this would imply they are driven by 
common jump state variables and also common 
speed of “jump-reversion” after a jump).



• Then there is a power series expansion we can 
use which replaces the integral appearing in the 
“extended” characteristic function and is both 
much, much faster and much more accurate (eg
1 part in 1012 accuracy in very tiny fractions of a 
millisecond - the papers provide full details). 
Then option pricing is reduced to a single one-
dimensional numerical integration 

• This means however many Brownian motions 
and Poisson processes there are, option 
valuation is very fast. 



Our F.T. technique is very general

• All you need is the ability to rapidly compute 

“extended” characteristic functions so our 

method has general interest (not just for 

commodities) eg Heston (1993), Levy processes 

like (stochastically time-changed) V.G. (Carr 

and co-authors (1999), (2005)).



Suggestions for further research

• This suggests avenues for further research:

• Replace Poisson jumps in case of assumption 2.2 

(parallel shifts) by eg time-changed V.G. (seems 

straightforward – at least for a single 

commodity).

• Perhaps, replace Poisson jumps in case of 

assumption 2.1 (exponentially dampened) by eg

time-changed V.G. (seems harder).



Summary

• The model is arbitrage-free.

• Automatically fits initial futures (or 
forward) commodity price curve.

• Captures empirical observations made about 
commodity prices (eg mean reversion, 
stochastic convenience yields (see paper)).

• Long-dated futures prices can jump less 
than short-dated futures. If so, jumps 
contribute to mean reversion.



Summary cont’d

• In the first paper, show we can price 
complex (exotic) commodity derivatives via 
Monte Carlo without discretisation error 
bias.

• Can rapidly price a class of simple 
European-style exotics including spread 
options, forward-start and cliquet options, in 
a consistent manner with a Fourier based 
algorithm.



Website for papers

• The papers which I mentioned earlier can be 
found on the website of the Centre for Financial 
Research at Cambridge University:

http://mahd-pc.jims.cam.ac.uk/seminar/2005.html

or, for the second paper, in Risk magazine, 
May 2006, “Commodity options optimised”, 
p72-77.


