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CUTTING EDGE. COMMODITIES

article Crosby (2005), we introduced an 
arbitrage-free, multi-factor, jump-diffusion 

model for pricing commodity derivatives that appears flexible enough to 
model derivatives on almost any type of commodity. The model is con-
sistent with any initial term structure of futures (or forward) commodity 
prices and captures stylised empirical observations made about commod-
ity prices (for example, mean reversion, stochastic convenience yields and 
jumps). The model allows for multiple jump processes and also allows, 
when there are jumps, for the prices of long-dated futures contracts to 
jump by smaller amounts than short-dated contracts. This latter point is 
particularly noteworthy because, despite this being an empirically well-
recognised feature of many commodity (especially natural gas and elec-
tricity) markets, it did not, to our knowledge, seem to have appeared in 
the literature before. Crosby (2005) shows that exotic commodity deriva-
tives can be priced within this model using Monte Carlo simulation and 
also suggests that it is possible to calibrate the model parameters by deriv-
ing implied parameters from the market prices of options. This would 
rely on being able to rapidly calculate the prices of standard options. A 

methodology was proposed to compute the prices of standard options, 
which, in general, used a multi-dimensional Monte Carlo integration 
over the arrival times of the Poisson jumps (MCIATJ).

A number of authors have used Fourier transform (FT) methodol-
ogy to price options, including Carr & Madan (1999), Heston (1993), 
Duffie, Pan & Singleton (2000)1, Duffie, Filipovic & Schachermayer 
(2003), Lewis (2001), Sepp (2003) and Lee (2004). They have shown 
that very rapid computation of standard (and, indeed, in Duffie, Pan 
& Singleton (2000), also some exotic) European-style option prices 
is possible provided the relevant characteristic function is known in 
analytical form. In our model, the characteristic function, in general, 
does not have an analytical form. The aim of this article is to exam-
ine the possibility of pricing standard options utilising a FT method-
ology. We show this is indeed possible and is much faster (typically 
approximately 30 to 400 times faster) and more accurate than the 
MCIATJ methodology. The Fourier Transform Power Series (FTPS) 
methodology described in this article relies on a rapidly convergent 
power series expansion of terms appearing in the characteristic func-
tion of the terminal futures price distribution.

The rest of this article is organised as follows. First, we introduce 
notation and provide a very brief overview of the model. We then 
write down the form of the relevant characteristic function and 
derive a specific option price formula. Following that, we provide 
some numerical results and comparisons. We then conclude.

Overview of the model
In this article, we will work exclusively in the equivalent martingale 
measure (EMM), in which futures commodity prices are martingales, 
which, depending on the form of the model, may not be unique. In 
essence, in the case of non-uniqueness (which corresponds to market 
incompleteness2) we assume that an EMM has been ‘fixed’ through 
the market prices of options and, by an abuse of language, call this the 
(rather than an) EMM.

We denote expectations, at time t, with respect to the EMM by 
Et[]. We will use the same notation as in Crosby (2005). We denote 
the (continuously compounded) risk-free short rate, at time t, by r(t) 
and we denote the price, at time t, of a (credit risk-free) zero-coupon 
bond maturing at time T by P(t, T).

We assume that interest rates are stochastic and follow a Gaussian 
interest rate model (for example, extended Vasicek, Babbs (1990), 
Hull & White (1993)), which is an arbitrage-free model consistent 
with any initial term structure of interest rates. The dynamics of 
bond prices under the EMM are (Babbs (1990) and Heath, Jarrow 
& Morton (1992)):
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where σP(t, T) is a purely deterministic function of t and T, with σP(T, 
T) = 0, and dzP(t) denotes standard Brownian increments. We will 
provide numerical examples below for a one-factor Gaussian (extended 
Vasicek) model in which we write σP(t, T) ≡ σr(1 – exp(–αr(T – t)))/
αr, where σr and αr are positive constants. However, all results in this 
article are applicable to any multi-factor Gaussian interest rate model 
without further ado.

We denote the futures commodity price, at time t, to (that is, the 
futures contract matures at) time T by H(t, T). Our model is an arbi-
trage-free model consistent with any initial term structure of futures 
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1 Duffie, Pan & Singleton (2000) consider the family of affine jump-diffusion models. It can be shown 
that our model is also a member of this family of models
2 For the important issue of hedging within a jump-diffusion model, see, for example, Hoogland, 
Neumann & Vellekoop (2001), Rebonato (2004) and Cont, Tankov & Voltchkova (2005) and the 
references therein
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commodity prices in which the dynamics of futures commodity 
prices under the EMM are:
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where, for each k = 1, 2, ... , K, σHk(t, T) are purely deterministic func-
tions of at most t and T, dzHk(t), for each k, are standard Brownian 
increments (which can be correlated with each other and with dzP(t) 
but we assume the correlations form a positive semi-definite correla-
tion matrix), and Nmt, for each m = 1, ... , M, are independent Poisson 
processes whose intensity rates, under the EMM, at time t, are λm(t), 
which are positive deterministic functions of at most t. The functions 
bm(t), for each m, are non-negative deterministic functions that we 
call jump decay coefficient functions. The parameters γmt, for each m, 
are parameters, which we call spot jump amplitudes. For each m, ENmt 
denotes the expectation operator, at time t, conditional on a jump oc-
curring in Nmt.

We assume that the spot jump amplitudes γmt are one of two pos-
sible forms, which we term those of assumption 1 and assumption 2, 
which in turn are linked to two possible specifications of the jump 
decay coefficient functions bm(t).

For each m = 1, ... , M, we assume that either:
■ Assumption 1. The spot jump amplitude γmt is assumed to be a 
constant, which we denote by βm. In this case, the jump decay coef-
ficient function bm(t) is assumed to be any non-negative deterministic 
function, or:
■ Assumption 2. The spot jump amplitudes γmt are assumed to be in-
dependent and identically distributed random variables, each of which 
is independent of each of the Brownian motions and of each of the 
Poisson processes. In this case, the jump decay coefficient function 
bm(t) is assumed to be identically equal to zero, that is, bm(t) = 0 for all 
t. Further, as in section 5 of Crosby (2005), we assume that, for this m, 
the spot jump amplitudes are normally distributed with mean βm and 
standard deviation υm.

We define the indicator functions, for each m = 1, ... , M, 1m(1) = 
1 if assumption 1 is satisfied, for this m, and 1m(1) = 0 otherwise and 
1m(2) = 1 if assumption 2 is satisfied, for this m, and 1m(2) = 0 other-
wise. Then equation (2) and assumptions 1 and 2 imply that:
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where we have used bm(t) ≡ 0 if 1m(2) = 1.

Characteristic function of log futures price and an  
option price formula
Crosby (2005) shows that, within this model, it is possible to calcu-
late the prices of standard European-style options (using the MCIATJ 
methodology). With this methodology, computation times are rela-

tively fast for very short-dated options but they increase with increas-
ing option maturity. We show in this article that our FTPS methodol-
ogy is much faster than the MCIATJ methodology and does not suffer 
from this disadvantage.

Consider a standard European-style option, maturing at time T1, 
written on a futures contract maturing at time T2. The payout of the 
option at time T1 is max(η(H(T1, T2) – Kstr, 0)) where Kstr is the strike 
of the option and where η = 1 if the option is a call and η = –1 if it 
is a put. (Note T1 ≤ T2.)

We will use the Fourier methods of Lewis (2001) and Sepp (2003) 
to obtain the price of this option, at time t. First, we need the charac-
teristic function of  ln(H(T1, T2)/H(t, T2)). By direct calculation (and 
using some results in section 4 of Crosby, 2005), it is given by:
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Note this is non-negative.
We now calculate the option price using results in Lewis (2001) 

and Sepp (2003).
■ Proposition 1. Define:
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Then the price, at time t, of the standard European-style option, ma-
turing at time T1, written on a futures contract maturing at time T2, 
where t ≤ T1 ≤ T2, is:
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See footnote 3 for an explanation of notation.
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■ Proof. We can use Girsanov’s theorem to effectively ‘pull’ the dis-
counting term:
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The rest of the proof follows by substituting our characteristic function 
(equation 3) into equation 3.11 of Lewis (2001) or, equivalently, into 
equation 3.18 of Sepp (2003) and simplifying.

It is possible, by the use of numerical integration techniques, to 
evaluate equation (5) and hence calculate the prices of standard 
European-style options. This is straightforward and efficient if all 
the Poisson processes satisfy assumption 2 and the intensity rates 
λm(s) are easily integrable. However, if any of the Poisson processes 
satisfy assumption 1, the necessity to calculate the integrals J2(u, 
m, T1, T2) and J3(u, m, T1, T2) with respect to s, which are inside 
the integral with respect to u, makes this quite computationally 
intensive. In addition, the term J1(m, T1, T2)  will also need to 
be calculated by numerical integration (although this is less prob-
lematic since it can be calculated once outside the integral with 
respect to u and stored). Therefore, we look for a methodology, 
which will allow option prices to be calculated much more quickly 

and more accurately than a direct numerical (double) integration 
as in equation (5). 
■ Assumption 3. We will henceforth assume that, for each m, m = 1, 
... , M, λm(s) ≡ λm and bm(s) ≡ bm are constants.

We will assume in what follows that, for each m = 1, ... , M, βm ≠ 0 
and bm > 0. These conditions are not restrictive since in the first case 
there would (if βm = 0) be no jumps and in the second case bm = 0 
means that the problem becomes a special case of assumption 2, which 
is much simpler. Now we will show that option prices can be more 
readily calculated as follows.

Proposition 2 is inspired by results in Abramowitz & Stegun 
(1970).
■ Proposition 2. Define sign(βm) = βm/|βm| where |βm| is the absolute 
value of βm. Define ψ1 = |βm|exp(–bm(T2 – t)) and ψ2 = |βm|exp(–bm(T2 
– T1)). Define y = |βm|exp(–bm(T2 – s)). Define θ via 0 ≤ θ ≤ π/2 and 
θ ≡ tan–1(2u), for u ≥ 0. Then:
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■ Proof. Consider J3(u, m, T1, T2) + iJ2(u, m, T1, T2). By combining 
sines and cosines into the complex exponential function:
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By substitution for y and θ and then by power series expansion of the 
exponential function, the above is equal to:
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by performing the integral term by term and simplifying. Now taking 
the real and imaginary parts yields equations (8) and (9). The proof of 
equation (7) is very similar and therefore omitted.

Using these power series expressions is much faster than numer-
ical integration. We can evaluate a sufficient number of terms to 
calculate the integrals in equations (7), (8) and (9) to any desired 
tolerance. We can then, substituting equations (7), (8) and (9) into 
equation (5), calculate option prices using a single one-dimen-
sional integration irregardless of how many Brownian motions 

and Poisson processes drive the futures commodity prices.
We should make a further comment about the convergence of the inte-

gral in equation (5). It is clear that the dominant term in the integrand as 
u → ∞ is Θ(u; Σ2(t, T1, T2)), which clearly tends to zero as u → ∞. Clearly, 
convergence will be faster when Σ2(t, T1, T2) is large. Conversely, when 
Σ2(t, T1, T2) is small, then convergence will be slower. This will happen, 
for example, when the time to maturity of the option is small.

Numerical examples
Here, we will compare the results of our FTPS methodology with the 
results using the MCIATJ methodology by providing two numerical 
examples, labelled 1 and 2, the results of which are in tables A and 
B respectively.

For the MCIATJ methodology, we proceed exactly as in Crosby 
(2005) and, as there, we use 1,500 Monte Carlo simulations and report 
the standard errors of the option prices. For our FTPS methodology, 
we evaluate the integral with respect to u in equation (5) using Simp-
son’s rule with 1,024 points. In view of the term Θ(u; Σ2(t, T1, T2)) in 
equations (5) and (6), we truncate the upper limit of the integral when 
the value of u is such that Θ(u; Σ2(t, T1, T2)) is less then 10–8. We trun-
cate the infinite series in equations (7), (8) and (9) when the value of 
an additional term in the series has converged to less than 10–12.

In our FTPS methodology, we must use an heuristic rule to esti-
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mate the errors. Our approach is to revalue the same options using 
Simpson’s rule with 8,192 points (eight times more than before), 
truncating the upper limit of the integral in equation (5) when the 
value of u is such that Θ(u; Σ2(t, T1, T2)) is less then 10–9 (one tenth 
of the previous tolerance) and truncating the infinite series in equa-
tions (7), (8) and (9) when the absolute value of an additional term 
in the series has converged to less than 10–13 (one tenth of the pre-
vious tolerance). We then report the differences (labelled heuristic 
error estimates in tables A and B) between the original option price 
estimates and these improved option price estimates. Of course, this 
rule is heuristic and these heuristic error estimates are not strictly 
comparable with the standard errors of the MCIATJ methodology 
but comparing the two should give approximate estimations of the 
relative accuracies of the two different methodologies.

Computations were performed on a desktop personal computer, 
running at 2.8GHz, with Microsoft Windows 2000 Professional, 
with 1Gb of RAM with a program written in Microsoft C++.

In both examples 1 and 2, we assume that the futures commod-
ity prices for all maturities are 95, the interest rate yield curve is 

flat with a continuously compounded risk-free rate of 0.05 (as in 
Miltersen & Schwartz (1998) and Crosby (2005)) and that interest 
rates follow a one-factor extended Vasicek model in which σP(t, T) ≡  
σr(1 – exp(– αr(T – t)))/αr, where σr = 0.0096 and αr = 0.2.

We use the same diffusion parameters as in Miltersen & Schwartz 
(1998) and Crosby (2005), that is, we have two Brownian motions 
(in addition to the Brownian motion driving interest rates) that 
is, K = 2 and, for each k, σHk(t, T) ≡ ηHk + χHk exp(–aHk(T – t)), 
with ηH1 = 0.266, ηH2 = 0.249/1.045 ≈ 0.23827751196, χH1 = 0.0, 
χH2 = –0.249/1.045, aH2 = 1.045, correl(dzH1(t), dzH2(t)) = –0.805, 
correl(dzH1(t), dzP(t)) = –0.0964, correl(dzH2(t), dzP(t)) = 0.1243.

In both examples 1 and 2, we value standard European-style call 
options on futures contracts whose maturities are 0.125 years after 
the maturity of the option. We price options with strikes 75, 80, 95, 
110 and 115, and option maturities equal to 0.25, 0.5, 0.75, one, two,  
and three years (there are 30 options in total).
■ Example 1. Here, we assume there is one Poisson process, M = 1, 
it satisfies assumption 1 and it has parameters (which are purely for 
illustration) λ1 = 0.75, β1 = 0.22 and b1 = 2.0.

We price the 30 options described above. The results are shown in 
table A. As in Crosby (2005), the calculation time for all 30 options 
using the MCIATJ methodology was 0.51 seconds. Using our FTPS 

A Example 1: one Poisson process
Option prices using the MCIATJ methodology

75 80 95 110 115

0.25 19.8460 15.1892 4.7491 0.9345 0.5129

0.50 19.9199 15.6447 6.0987 1.7881 1.1347

0.75 19.9956 15.9661 6.9049 2.4148 1.6419

1 20.0410 16.1943 7.4844 2.9143 2.0654

2 20.0639 16.7238 8.9826 4.3986 3.4127

3 19.9732 16.9906 9.9626 5.5164 4.4828

Standard errors for the option prices above

75 80 95 110 115

0.25 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.50 < 0.0001 < 0.0001 0.0001 0.0003 0.0004

0.75 0.0001 0.0002 0.0005 0.0008 0.0009

1 0.0003 0.0004 0.0009 0.0014 0.0013

2 0.0009 0.0012 0.0019 0.0025 0.0026

3 0.0011 0.0014 0.0021 0.0028 0.0028

Option prices using the FTPS methodology

75 80 95 110 115

0.25 19.8460 15.1892 4.7491 0.9344 0.5129

0.50 19.9199 15.6447 6.0986 1.7881 1.1347

0.75 19.9956 15.9660 6.9050 2.4147 1.6410

1 20.0410 16.1943 7.4838 2.9147 2.0667

2 20.0645 16.7226 8.9833 4.3986 3.4120

3 19.9731 16.9901 9.9630 5.5139 4.4833

Heuristic error estimates for the option prices above using the FTPS methodology

75 80 95 110 115

0.25 7.78E-08 –6.09E-07 –3.99E-07 –4.14E-07 1.48E-07

0.50 –6.52E-08 2.80E-08 –3.43E-09 –7.80E-08 9.32E-09

0.75 –5.19E-08 6.23E-08 –1.76E-08 –6.61E-08 –6.83E-08

1 –2.61E-08 7.39E-08 –3.54E-08 –2.32E-08 –8.90E-08

2 8.76E-09 2.04E-08 –1.71E-08 1.92E-08 –1.02E-09

3 2.16E-08 2.25E-08 –2.56E-08 3.13E-08 2.32E-08

Note: all options are standard European-style calls on futures. The strikes of the options are across 
the first row. The values of T

1
 are down the first column. In each case, the time to maturity of the 

underlying futures contract is given by T
2
 = T

1
 + 0.125, that is, the futures contract matures 0.125 

years after the maturity of the option

B Example 2: three Poisson processes
Option prices using the MCIATJ methodology

75 80 95 110 115

0.25 19.8554 15.2171 4.8723 1.0370 0.5913

0.50 19.9521 15.7049 6.2423 1.9175 1.2436

0.75 20.0449 16.0451 7.0592 2.5582 1.7671

1 20.1023 16.2847 7.6420 3.0649 2.2002

2 20.1408 16.8206 9.1260 4.5375 3.5451

3 20.0465 17.0788 10.0822 5.6348 4.6004

Standard errors for the option prices above

75 80 95 110 115

0.25 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

0.5 < 0.0001 < 0.0001 < 0.0001 0.0002 0.0002

0.75 < 0.0001 0.0001 0.0003 0.0005 0.0005

1 0.0002 0.0002 0.0005 0.0007 0.0008

2 0.0004 0.0006 0.0009 0.0015 0.0011

3 0.0005 0.0006 0.0009 0.0011 0.0011

Option prices using the FTPS methodology

75 80 95 110 115

0.25 19.8554 15.2171 4.8723 1.0370 0.5913

0.50 19.9521 15.7049 6.2423 1.9176 1.2439

0.75 20.0450 16.0451 7.0592 2.5584 1.7672

1 20.1023 16.2849 7.6423 3.0653 2.2020

2 20.1410 16.8209 9.1265 4.5404 3.5453

3 20.0462 17.0788 10.0826 5.6349 4.5996

Heuristic error estimates for the option prices using the FTPS methodology

75 80 95 110 115

0.25 1.15E-08 –5.70E-07 –2.86E-07 –2.94E-07 1.08E-07

0.50 –5.71E-08 4.18E-08 2.00E-08 –5.93E-08 3.23E-08

0.75 –2.49E-08 5.82E-08 1.02E-08 –6.54E-08 –3.59E-08

1 3.08E-10 5.81E-08 –4.90E-09 –3.99E-08 –6.72E-08

2 9.74E-09 1.37E-08 –9.44E-09 1.08E-08 –5.45E-09

3 1.85E-08 1.53E-08 –1.77E-08 2.41E-08 1.47E-08
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methodology, the calculation time for all 30 options is less than 0.016 
seconds, corresponding to an average of approximately 0.00053 sec-
onds per option. The FTPS methodology is, on average, approxi-
mately 32 times faster than the MCIATJ methodology. Comparing 
the heuristic error estimates (the largest, in absolute value, of which 
is 0.000000609) with the standard errors reported in Crosby (2005) 
(which vary between less than 0.0001 and 0.0028) suggests that the 
accuracy of the FTPS methodology is much better than that of the 
MCIATJ methodology. More detailed analysis (not reported) of the 
results in table A shows that for options with a maturity of 0.25 years 
(the shortest maturity), the MCIATJ methodology is actually very 
competitive (in terms of both speed and accuracy) with the FTPS 
methodology. The benefits of the FTPS methodology are seen with 
options with longer times to maturity.
■ Example 2. Here, we assume there are three Poisson processes, M = 
3, and they all satisfy assumption 1, with parameters (which, again, are 
purely for illustration) λ1 = 0.25, β1 = 0.32, b1 = 3.0, λ2 = 0.30, β2 = 
0.22, b2 = 2.0, λ3 = 0.35, β3 = 0.16 and b3 = 1.0.

We price the same 30 options as before. The results are shown in 
table B. The calculation time for all 30 options using the MCIATJ 
methodology was approximately 20.17 seconds. Using our FTPS 
methodology, the calculation time for all 30 options is approxi-
mately 0.0414 seconds or an average of approximately 0.00138 
seconds per option. The FTPS methodology is, on average, approx-
imately 487 times faster than the MCIATJ methodology. The larg-
est (in absolute value) heuristic error estimate across the 30 options 
is 0.00000057. Comparing the heuristic error estimates with the 
standard errors in table B suggests, again, that the accuracy of the 
FTPS methodology is very much better than that of the MCIATJ 
methodology. The accuracy of the FTPS methodology is also rea-
sonably uniform across the 30 different options, whereas the MCI-
ATJ methodology is typically much more (respectively less) accu-
rate at lower (respectively higher) strikes and shorter (respectively 
longer) times to option maturity.

In the examples above, each of the 30 option prices was calculated 
individually. Total calculation times could be reduced further, by 
exploiting the fact that most terms in equation (5) are independent 

of the strike of the option. A further possibility might be to use the 
fast Fourier transform (FFT) approach of Carr & Madan (1999) to 
obtain option prices across a wide range of strikes simultaneously. 
Unfortunately, equation (5) is not compatible with the FFT algo-
rithm. However, Carr & Madan (1999) describes two approaches 
that are fully compatible with the FFT algorithm and which can be 
used with essentially arbitrary characteristic functions. It might be 
possible to use their FFT approach with the characteristic function 
of equation (3) and with power series expansions similar to equations 
(7), (8) and (9). However, we leave this for future research.

We have focused on pricing standard European-style options on 
futures but clearly, using results in Crosby (2005) and Miltersen & 
Schwartz (1998), it is equally possible to price standard options on 
forwards and futures-style options on futures. Indeed, the price of a 
futures-style option on futures (whether European-style or Ameri-
can-style) is simply given by equation (5) with A(s, T1, T2) formally 
replaced by zero and P(t, T1) formally replaced by unity.

Conclusions
We have shown that it is possible to evaluate the prices of standard 
European-style options considerably more accurately and between ap-
proximately 30 to 400 times faster than the method originally proposed 
in Crosby (2005). Our FTPS methodology is extremely accurate, ro-
bust and straightforward to implement. This will prove very useful for 
calibrating the model parameters by deriving implied parameters from 
the market prices of commodity options. Once the model parameters 
have been calibrated, the Crosby (2005) model is a very flexible frame-
work in which it is possible to price a portfolio of commodity deriva-
tives (including exotics) on a consistent basis. ■
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