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Motivation p2/82

• The aim of this lecture is to give you a basic introduction to jump and Lévy processes and

their uses in mathematical finance.

• Processes with jumps are being more commonly used. They are especially useful for modelling

credit events (jumps to default) and commodity prices - although given the extreme market

moves of Autumn 2008, they may well become more common in other asset classes as well.

• We know Brownian motion has continuous sample paths. Intuitively, large moves happen very

rarely. Jump processes have discontinuous sample paths and, therefore, they allow for large

sudden moves in the underlying price process. They can also capture skewness and excess

kurtosis in price returns. The realised variance of a jump process is stochastic (even without

introducing any notion of stochastic volatility). These properties are all observed in historical

time-series (generated under the real-world measure).

• Additionally, jump processes (modelled under the (or a) equivalent martingale measure (the

measure is rarely unique for jump processes because the market is typically incomplete)) can

capture the effect of volatility smiles and skews which makes them attractive for derivatives

pricing.
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Motivation 2 p3/82

• There are barriers to using jump processes.

• The mathematical machinery is a little more complex.

• Instead of needing to solve a partial differential equation (PDE) to price derivatives, one has

to solve a partial-integro differential equation (PIDE) which is much harder.

• On the positive side, pricing vanilla options by Fourier methods is quite straightforward and

there are efficient ways of performing Monte Carlo simulations.
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Mathematics p4/82

• We will freely use three important pieces of maths and one definition.

• The characteristic function of a process Xt is defined to be: E[exp(izXt))]. Here z can

certainly be any real number and it can also, potentially, be complex as long as the

expectation remains finite (which may place a restriction on its imaginary part).

• A probability distribution, with characteristic function φ(z) is said to be infinitely divisible if,

for every integer n ≥ 1, φ(z) is also the nth power of a characteristic function. Not all

probability distributions satisfy this (eg. uniform U(0, 1)) but many do (eg. Gaussian,

Poisson, gamma).

• A process Xt, defined for t ≥ 0, has stationary increments if the distribution of Xt+s −Xt, for

any t ≥ 0, depends only on s and not upon t, for all s ≥ 0.

• A process Xt, defined for t ≥ 0, has independent increments if, for every possible set of times

0 ≤ t1 < t2 ≤ t3 < t4, Xt4 −Xt3 is independent of Xt2 −Xt1.

4



Poisson processes p5/82

• The prototype jump process is the Poisson process N(t). It is a process with stationary and

independent increments. It starts at time t0 ≡ 0 with N(t0) = 0. It has Poisson distributed

increments which means its support (i.e. the set of values it can take) lies on the non-negative

integers. We denote by λ the intensity rate of the process (with λ constant, 0 < λ <∞).

Then the probability that N(t) = n is given by:

Prob(N(t) = n) =
exp(−λt)(λt)n

n!
.

• Note that:
∞∑
n=0

exp(−λt)(λt)n

n!
= 1,

(from the power series representation of the exp function) which is required for a distribution

function.

• We can compute the characteristic function of the Poisson process:
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Poisson processes 2 p6/82

• Indeed:

Et0[exp(izN(t))] = Et0[Et0[exp(izN(t))]|N(t) = n]] =

∞∑
n=0

exp(−λt)(λt)n

n!
exp(izn)

=

∞∑
n=0

exp(−λt)(λteiz)n

n!
= exp(−λt) exp(λteiz)

= exp(λt(eiz − 1)).

We can differentiate the above and set z = 0, to find:

Et0[N(t)] = λt.

• We see that the intensity rate λ is the expected number of jumps per unit of time.
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Poisson processes 3 p7/82

• Before moving on, we state an important result concerning multiple Poisson processes.

Suppose we have K independent Poisson processes Nk(t) with intensity rates λk,

k = 1, ..., . . . , K (0 < λk <∞). We consider the process L(t), which is the sum of these

processes, i.e. L(t) =
∑K

k=1Nk(t), then: L(t) is a Poisson process with intensity rate∑K
k=1 λk. Proof: A probabilistic proof is in Ross (1997). Alternatively, note that:

Et0[exp(izL(t))] = Et0[exp(iz

K∑
k=1

Nk(t))] =

K∏
k=1

Et0[exp(izNk(t))] (independence)

=

K∏
k=1

[exp(λkt(e
iz − 1))] = exp(

K∑
k=1

λkt(e
iz − 1)),

which is the characteristic function of a Poisson process with intensity rate
∑K

k=1 λk.

• We use this result later.
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Poisson processes 4 p8/82

• The simple Poisson process defined above is a starting point, but it can only jump up by unity,

so we need something richer to have a suitable model for modelling risk-neutral stock prices.

• Firstly, we would like to have a range of possible (and, indeed, even random) jump amplitudes

(not just unity). We can capture this by using a compound Poisson process. Secondly, we

have the intuition that jumps are rare events. Most of the time, we expect stock prices

movements to be small. We can capture this by adding a Brownian motion to the compound

Poisson process. The sum is called a “jump-diffusion process”.
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Jump-diffusion processes p9/82

• The compound Poisson process is constructed as follows: We have a Poisson process N(t)

(with N(t0) = 0) with intensity rate λ (with λ constant, 0 < λ <∞). Every time the Poisson

process jumps, we draw an independent and identically distributed random variable J (which,

as a special case, could be a constant, not necessarily one - nor necessarily positive) from a

given distribution for which the probability of J being in the (Borel) set A is

Prob(J ∈ A) = ν(A)/λ, further implying ν(R) = λ which can also be expressed as

λ =
∫∞
−∞ ν(dx).

• We construct a process Xt, with Xt0 = 0, as a sum of a Brownian motion Wt (with Wt0 = 0)

with volatility term σ (0 < σ <∞) and the compound Poisson process, together with a drift

term γ.
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Jump-diffusion processes 2 p10/82

• We write (recall t0 ≡ 0):

Xt = γt + σWt +

N(t)∑
k=1

J.

Note that N(t) is the (random) number of jumps until time t and that J is (in general) a

random variable - more specifically, it is the outcome of an independent draw from the

specified distribution - so it can (and will) be different for each k. The convention is always

that, if N(t) = 0, i.e. the sum is empty, then the sum is set to zero.

• Wt, N(t) and J are independent.
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Jump-diffusion processes 3 p11/82

• We compute the characteristic function of Xt. The characteristic function of the Brownian

component is Et0[exp(izσWt)] = exp(−1
2σ

2z2t) (standard result or integrate over the

Gaussian density function and complete the square).

• Hence, the characteristic function of Xt is (using independence of N(t) and J and then that

the random variables J are independent and identically distributed and then the power series

for the exp function):
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Jump-diffusion processes 4 p12/82

•

Et0[exp(iz(Xt))] = Et0[exp(iz(γt + σWt +

N(t)∑
n=1

J))]

= exp(izγt− 1

2
σ2z2t)Et0[Et0[exp(iz(

N(t)∑
n=1

J))|J = x,N(t) = k]]

= exp(izγt− 1

2
σ2z2t)

∞∑
k=0

exp(−λt)(λt)k

k!

k∏
n=1

(

∫ ∞
−∞

eizx
ν(dx)

λ
)

= exp(izγt− 1

2
σ2z2t)

∞∑
k=0

exp(−λt)(λt
∫∞
−∞ e

izxν(dx)
λ )k

k!

= exp(izγt− 1

2
σ2z2t) exp(−λt) exp(λt

∫ ∞
−∞

eizx
ν(dx)

λ
)

= exp(izγt− 1

2
σ2z2t) exp(λt(

∫ ∞
−∞

eizx
ν(dx)

λ
− 1)).
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Jump-diffusion processes 5 p13/82

• This can be re-expressed as:

Et0[exp(iz(Xt))] = exp(izγt− 1

2
σ2z2t) exp(λt(

∫ ∞
−∞

eizx
ν(dx)

λ
− 1))

= exp(izγt− 1

2
σ2z2t) exp(t(

∫ ∞
−∞

(eizx − 1)ν(dx))).

• The last two lines are equivalent since λ =
∫∞
−∞ ν(dx).

• The characteristic function of Xt can also be expressed as Et0[exp(iz(Xt))] ≡ exp(tΦ(z)),

where Φ(z) is called the “characteristic exponent”:

Φ(z) ≡ izγ − 1

2
σ2z2 +

∫ ∞
−∞

(eizx − 1)ν(dx).
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Jump-diffusion processes 6 p14/82

• We note one fact for future reference:

• Denote the expectation of J by mJ i.e. mJ =
∫∞
−∞ x

ν(dx)
λ . If we form the process

Mt = Xt − λmJt, then Mt0 = 0 and, furthermore, the characteristic function of Mt is:

Et0[exp(iz(Mt))] = exp(t(izγ − 1

2
σ2z2 +

∫ ∞
−∞

(eizx − 1− izx)ν(dx))).

This means the characteristic exponent of Mt is:

izγ − 1

2
σ2z2 +

∫ ∞
−∞

(eizx − 1− izx)ν(dx).
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Jump-diffusion processes 7 p15/82

• We will be concerned with constructing a model for the evolution of stock prices in a

risk-neutral world. We assume the absence of arbitrage which certainly guarantees the

existence of at least one equivalent martingale measure. However, for models with jumps,

because the market is (except in rare special cases) incomplete, the equivalent martingale

measure is not unique. That is, multiple equivalent martingale measures exist, all of which are

consistent with no-arbitrage but the price of a derivative security will be different for each

possible equivalent martingale measure.

• We will assume that one such martingale measure Q has been fixed (typically by a calibration

to the market prices of options) on a filtered probability space (Ω,F , {Ft}t≥t0≡0,Q). The

filtration F is the natural filtration generated by Wt, N(t) and J .
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Jump-diffusion processes 8 p16/82

• The jump-diffusion process introduced above is rich enough to be used to model the dynamics

of stock prices under Q. As with the standard Black-Scholes model, we model log prices.

• We assume that the stock price, S(t), at time t, with t ≥ t0 ≡ 0, Xt0 = 0, is:

S(t) = S(t0) exp((r − q)t) exp(Xt)

= S(t0) exp((r − q)t) exp(γt + σWt +

N(t)∑
n=1

J),

where r is the risk-free interest-rate and q is the dividend yield (both assumed constant for

notational simplicity).

• However, we must specify γ. We know that the drift rate on the stock, under Q, must be r− q.
Equivalently, EQ

t1
[S(t2)] = S(t1) exp((r − q)(t2 − t1)), for any t2 ≥ t1 ≥ t0 ≡ 0. Therefore, we

must choose γ such that EQ
t0

[exp(Xt)] = 1 to have a model consistent with no-arbitrage.

16



Jump-diffusion processes 9 p17/82

• We must choose:

γ = −1

2
σ2 −

∫ ∞
−∞

(ex − 1)ν(dx).

• Why this choice? The characteristic function becomes:

EQ
t0

[exp(iz(Xt))] = exp(iz

(
−1

2
σ2 −

∫ ∞
−∞

(ex − 1)ν(dx)

)
t− 1

2
σ2z2t)

exp(t(

∫ ∞
−∞

(eizx − 1)ν(dx))).

Now set z = −i or iz = 1, and it is clear, that with this choice of γ, that EQ
t0

[exp(Xt)] = 1.
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Jump-diffusion processes 10 p18/82

• Rearranging, we can now write the stock price dynamics as:

logS(t) = logS(t0) + (r − q − 1

2
σ2 − k)t + σWt +

N(t)∑
n=1

J,

where k ≡
∫∞
−∞(ex − 1)ν(dx).

• Note that the term −1
2σ

2 is the usual term we see in the standard Black-Scholes (pure

diffusion) model.

• In differential notation, we write this as:

d logS(t) = (r − q − 1

2
σ2 − k)dt + σdWt + JdN(t).
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Ito’s lemma for jump-diffusion processes p19/82

• There is a form of Ito’s lemmma for jump-diffusion processes. We will state it by considering a

slightly more general process. Consider a process Xt, for t ≥ t0 ≡ 0, of the form:

Xt = Xt0 +

∫ t

t0

b(u,Xu−)du +

∫ t

t0

σ(u,Xu−)dWu +

N(t)∑
n=1

∆Xn,

where b(t,Xt−) and σ(t,Xt−) are continuous nonanticipating processes with

EQ
t0

[
∫ t
t0
σ(u,Xu−)2du] <∞, and where ∆Xn = XTn −XTn−. Here, Tn, n = 1, ..., N(t) denote

the jump times of Xt. Note that the notation ∆Xn = XTn −XTn− reinforces a key point

about the process Xt. It is right-continuous left-limits (RCLL or cadlag). This means that

Xt = limu↘t Xu includes the effect of any jump at time t, whereas Xt− = limu↗t Xu is the

value just before a potential jump. Now consider the process Yt = f (t,Xt), where

f : [t0,∞)× R→ R is any C1,2 function.
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Ito’s lemma for jump-diffusion processes 2 p20/82

• Then

f (t,Xt) = f (t0, Xt0) +

∫ t

t0

[
∂f

∂u
(u,Xu−) +

∂f

∂X
(u,Xu−)b(u,Xu−)]du

+

∫ t

t0

1

2

∂2f

∂X2
(u,Xu−)σ2(u,Xu−)du +

∫ t

t0

∂f

∂X
(u,Xu−)σ(u,Xu−)dWu

+

N(t)∑
n=1,Tn≤t

(f (Tn, XTn− + ∆Xn)− f (Tn, XTn−)).

In differential notation, this is written:

dYt =
∂f

∂t
(t,Xt−)dt +

∂f

∂X
(t,Xt−)b(t,Xt−)dt

+
1

2

∂2f

∂X2
(t,Xt−)σ2(t,Xt−)dt +

∂f

∂X
(t,Xt−)σ(t,Xt−)dWt

+ (f (t,Xt− + ∆Xt)− f (t,Xt−))dN(t),

with ∆Xt = Xt −Xt−.
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Ito’s lemma for jump-diffusion processes 3 p21/82

• Proof (outline): Note that in the time intervals (Tn, Tn+1), the process Yt = f (t,Xt) is

continuous and we can apply the standard form of Ito’s lemma. If a jump of size ∆Xn occurs

in Xt, then the resulting change in Yt is simply f (Tn, XTn− + ∆Xn)− f (Tn, XTn−). The total

change can be written as the sum of the continuous and discontinuous parts.

• We have the process for log of the stock price logS(t):

logS(t) = logS(t0) + (r − q − 1

2
σ2 − k)t + σWt +

N(t)∑
n=1

J,

• What is the process for the stock price S(t) itself?
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Ito’s lemma for jump-diffusion processes 4 p22/82

• Here the function f is f (t, logS(t)) = exp(logS(t)). We get

S(t) = S(t0) +

∫ t

t0

(r − q − k)S(u−)du +

∫ t

t0

σS(u−)dWu

+

N(t)∑
n=1,Tn≤t

(exp(J)− 1)S(Tn−).

Or in differential notation:

dS(t)

S(t−)
= (r − q − k)dt + σdWt + (exp(J)− 1)dN(t).

Note k =
∫∞
−∞(ex − 1)ν(dx) which can be written as k = λEQ[exp(J)− 1], where this

expectation should be interpreted as the expected value, under Q, of exp(J)− 1, conditional

on a jump occuring and where λ is the intensity rate of N(t) under Q. So we can also write:

dS(t)

S(t−)
= (r − q)dt + σdWt + (exp(J)− 1)dN(t)− λEQ[exp(J)− 1]dt.
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Stochastic integral formula p23/82

• A slight digression:

• Suppose we consider the process Yt, t ≥ t0 ≡ 0, with Yt0 ≡ 0, defined via Yt ≡
∑N(t)

n=1 f (J), for

some well-behaved function f . Then what is EQ
t0

[Yt]? We have:

EQ
t0

[Yt] = EQ
t0

[

N(t)∑
n=1

f (J)] = EQ
t0

[EQ
t0

[

N(t)∑
n=1

f (J)|N(t) = k]] = EQ
t0

[EQ
t0

[

k∑
n=1

f (J)]]

= EQ
t0

[kEQ[f (J)]] = λtEQ[f (J)] = λt

∫ ∞
−∞

f (x)
ν(dx)

λ

= t

∫ ∞
−∞

f (x)ν(dx).

Therefore, the process {Yt − t
∫∞
−∞ f (x)ν(dx)} i.e. the process

{
∑N(t)

n=1 f (J)− t
∫∞
−∞ f (x)ν(dx)} is a martingale.
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Stochastic integral formula 2 p24/82

• In differential notation, this is sometimes written:

EQ
t0

[f (J)dN(t)− λEQ[f (J)]dt] = 0.

Or, essentially equivalently, sometimes as:

EQ
t0

[f (J)dN(t)] =

∫ ∞
−∞

f (x)ν(dx)dt.

• The choice f (J) = exp(J)− 1 gives extra intuition on the final equation, two slides ago.

• There is a stochastic integral formula which resembles these last results:

• If we mean correct the Poisson process so it is a martingale, then stochastic integrals (which,

financially, are the profit or loss from a self-financing trading strategy) with respect to the

mean corrected Poisson process have zero expectation (which is completely analogous to the

Brownian motion case).
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Pricing equation p25/82

• Is there an equivalent to the Black-Scholes PDE?

• Yes, but the derivation is different.

• Suppose we have an option that matures at time T at which time it pays C(T ). What is its

price C(t), at time t?

• We let Ĉ(t) be the forward price of the option, at time t to time T i.e.

Ĉ(t) ≡ C(t) exp(r(T − t)). In the absence of arbitrage, the price of the option is its expected

discounted value (under Q). Therefore, C(t) = EQ
t [exp(−r(T − t))C(T )] which is the same as

Ĉ(t) = EQ
t [Ĉ(T )], since Ĉ(T ) = C(T ) exp(r(T − T )) = C(T ). Therefore, Ĉ(t) is a

martingale under Q.

• Therefore the drift of Ĉ(t) is zero. But we can compute the drift by applying Ito’s lemma. We

apply it with y(t) ≡ logS(t) for convenience so Ĉ(t) (and also C(t)) is a function of y(t) as

well as of t.
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Pricing equation 2 p26/82

• Ito gives us:

dĈ(t) =
∂Ĉ

∂t
dt + (r − q − 1

2
σ2 − k)

∂Ĉ

∂y
dt +

1

2
σ2∂

2Ĉ

∂y2
dt

+ σ
∂Ĉ

∂y
dWt + (Ĉ(t, y(t−) + ∆y(t))− Ĉ(t, y(t−)))dN(t).

Now take expectations under Q. The expected value of the term

(Ĉ(t, y(t−) + ∆y(t))− Ĉ(t, y(t−)))dN(t) is simply
∫∞
−∞(Ĉ(t, y + x)− Ĉ(t, y))ν(dx)dt. This

follows from slide “Stochastic integral formula 2”. Setting the expected value to zero, we get:

0 =
∂Ĉ

∂t
+ (r − q − 1

2
σ2 − k)

∂Ĉ

∂y
+

1

2
σ2∂

2Ĉ

∂y2

+

∫ ∞
−∞

(Ĉ(t, y + x)− Ĉ(t, y))ν(dx).
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Pricing equation 3 p27/82

• Now we switch back to C(t). Since, Ĉ(t) ≡ C(t) exp(r(T − t)), then ∂Ĉ
∂t = ∂C

∂t − rC(t), and,

furthermore, using k =
∫∞
−∞(ex − 1)ν(dx) and rearranging, we get:

rC(t) =
∂C

∂t
+ (r − q − 1

2
σ2)

∂C

∂y
+

1

2
σ2∂

2C

∂y2

+

∫ ∞
−∞

(C(t, y + x)− C(t, y)− (ex − 1)
∂C

∂y
)ν(dx).

The first line is exactly the same as the Black-Scholes pde (remember we are in log

co-ordinates: y(t) ≡ logS(t)).

• The second line is new. With jumps, we get a non-local-term, an integral term. So we get a

PIDE (partial-integro differential equation). In general, these are harder to solve than PDEs

but they can be solved (very occasionally analytically but more typically numerically with

some appropriate treatment of the integral term).
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Pricing equation 4 p28/82

• For future reference, we switch back to stock price co-ordinates S(t) and then we can write

our pricing PIDE as:

rC(t, S(t)) =
∂C

∂t
(t, S(t)) + (r − q)∂C

∂S
(t, S(t))S +

1

2
σ2∂

2C

∂S2
(t, S(t))S2

+

∫ ∞
−∞

(C(t, S(t) exp(x))− C(t, S(t))− S(t)(ex − 1)
∂C

∂S
)ν(dx).

or in terms of the forward stock price Ŝ(t), at time t to time T , defined via

Ŝ(t) ≡ S(t) exp((r − q)(T − t)), and the forward option price Ĉ(t) ≡ Ĉ(t, Ŝ(t)) as:

0 =
∂Ĉ

∂t
(t, Ŝ(t)) + (−k)

∂Ĉ

∂Ŝ
(t, Ŝ(t))Ŝ +

1

2
σ2∂

2Ĉ

∂Ŝ2
(t, Ŝ(t))Ŝ2

+

∫ ∞
−∞

(Ĉ(t, Ŝ(t) exp(x))− Ĉ(t, Ŝ(t)))ν(dx),

where we used k =
∫∞
−∞(ex − 1)ν(dx) again.
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Hedging under jump-diffusion processes p29/82

• We have derived a counterpart to the Black-Scholes pde but we did not do so by a

Merton-style delta-hedging argument. Nevertheless, it is instructive to see what happens if we

try to follow a Merton-style delta-hedging argument. Specifically, we consider a self-financing

trading strategy defined by holding one option (we will, again, work with the forward option

price Ĉ(t)) and selling φt units of stock in the forward market.

• One technical issue is that the process φt is a non-anticipating predictable (i.e. it is Ft−
measurable) caglad process (i.e. it has right limits as opposed to the process for the stock

price S(t) (and for the forward stock price Ŝ(t)) which has left limits).
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Hedging under jump-diffusion processes 2 p30/82

• We hedge in the forward market, just for mathematical convenience, in order to avoid keeping

track of terms involving r and q.

• We note that the dynamics of the forward stock price under Q are, by Ito’s lemma:

dŜ(t)

Ŝ(t−)
= (−k)dt + σdWt + (exp(J)− 1)dN(t).

• We enter into the self-financing trading strategy at time t (at which time it costs nothing) and

continue it until the option matures at time T , at all times holding one option (in the forward

market) and being short φt units of stock (in the forward market).

• The value of the self-financing trading strategy at time T is:

ε(φt) ≡ Ĉ(T )− Ĉ(t)−
∫ T

t

φudŜ(u).
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Hedging under jump-diffusion processes 3 p31/82

• Using Ito’s lemma, the value of the self-financing trading strategy at time T is:

ε(φt) =

∫ T

t

[
∂Ĉ

∂u
(u, Ŝ(u−)) +

∂Ĉ

∂Ŝ
(u, Ŝ(u−))(−k)Ŝ(u−)]du

+

∫ T

t

1

2

∂2Ĉ

∂Ŝ2
(u, Ŝ(u−))σ2Ŝ(u−)2du +

∫ T

t

∂Ĉ

∂Ŝ
(u, Ŝ(u−))σŜ(u−)dWu

+

N(T )∑
n=1,t<Tn≤T

(Ĉ(Tn, Ŝ(Tn−) + ∆Ŝ(t))− Ĉ(Tn, Ŝ(Tn−)))

−
∫ T

t

φu(−k)Ŝ(u−)du−
∫ T

t

φuσŜ(u−)dWu

−
N(T )∑

n=1,t<Tn≤T

φTn(exp(J)− 1)Ŝ(Tn−).

• Now use the fact that Ĉ(t, Ŝ(t)) certainly satisfies our pricing PIDE and rearrange:
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• The value of the self-financing trading strategy at time T is:

ε(φt) =

∫ T

t

(
∂Ĉ

∂Ŝ
(u, Ŝ(u−))− φu)σŜ(u−)dWu

+

N(T )∑
n=1,t<Tn≤T

(Ĉ(Tn, Ŝ(Tn−) + ∆Ŝ(t))− Ĉ(Tn, Ŝ(Tn−)))

−
∫ T

t

∫ ∞
−∞

(Ĉ(u, Ŝ(u−) exp(x))− Ĉ(u, Ŝ(u−)))ν(dx)du

+

∫ T

t

φukŜ(u−)du−
N(T )∑

n=1,t<Tn≤T

φTn(exp(J)− 1)Ŝ(Tn−).

Now the first line of this equation is a martingale and so are the second and third (using slide

“Stochastic integral formula 2”) taken together as, also, is the fourth line (this uses the result

k =
∫∞
−∞(ex − 1)ν(dx) again).
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• So the expected value of the self-financing trading strategy under Q is zero i.e. EQ
t [ε(φt)] = 0.

This is actually true for any value of φt. But the key point about the Merton-style argument

in the Black-Scholes (pure diffusion) framework is that not only is the expected value zero but,

also with the choice φt = ∂Ĉ
∂Ŝ

, the actual realised value is always zero i.e. the strategy is a

perfect hedge.

• If we were to choose φt = ∂Ĉ
∂Ŝ

, we would hedge out the risk from the Brownian component but

not from the jump component. Therefore, it would NOT be a perfect hedge.

• What can we do?

• We can certainly compute the variance VQ
t [ε(φt)] of ε(φt) under Q. With the Merton-style

argument in the Black-Scholes (pure diffusion) framework, the variance would be zero since it

is a perfect hedge. What is it with jumps included?

33



Hedging under jump-diffusion processes 6 p34/82

• Using Ito’s isometry formulae, and using the fact that EQ
t [ε(φt)] = 0, we get:

VQ
t [ε(φt)] = EQ

t [

∫ T

t

|(∂Ĉ
∂Ŝ

(u, Ŝ(u−))− φu)σŜ(u−)|2du]

+ EQ
t [

∫ T

t

∫ ∞
−∞
|Ĉ(u, Ŝ(u−) exp(x))− Ĉ(u, Ŝ(u−))

− φu(exp(x)− 1)Ŝ(u−)|2ν(dx)du].

• Note this is a positive quadratic function of φt.

• It is instrutive to ask what value of φt minimises the variance VQ
t [ε(φt)]. We can find this out

by differentiating VQ
t [ε(φt)] with respect to φt and setting the resulting equation to zero.
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• We get (after trivial algebraic rearrangement):

0 = (
∂Ĉ

∂Ŝ
(t, Ŝ(t−))− φt)σ2Ŝ2(t−) + (

∫ ∞
−∞

(Ĉ(t, Ŝ(t−) exp(x))− Ĉ(t, Ŝ(t−))

− φt(exp(x)− 1)Ŝ(t−))(exp(x)− 1)Ŝ(t−)ν(dx)).

Solving for φt, we get:

φt =
σ2∂Ĉ

∂Ŝ
(t, Ŝ(t−)) + 1

Ŝ(t−)
(
∫∞
−∞(Ĉ(t, Ŝ(t−) exp(x))− Ĉ(t, Ŝ(t−)))(exp(x)− 1)ν(dx))

σ2 +
∫∞
−∞(exp(x)− 1)2ν(dx)

.

• Note this is the optimal hedge and it is valid for all t up to the option maturity T - not just at

the time the self-financing trading strategy is entered into or the option is first bought -

although, clearly, φt will change as the stock price changes i.e. it is a dynamic strategy.
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Hedging under jump-diffusion processes 8 p36/82

• Note that for a forward contract: Ĉ(t, Ŝ(t−)) = Ŝ(t−) (ignoring the fixed leg), and so

(Ĉ(t, Ŝ(t−) exp(x))− Ĉ(t, Ŝ(t−)))(exp(x)− 1) = Ŝ(t−)(exp(x)− 1)2. Furthermore,
∂Ĉ
∂Ŝ

(t, Ŝ(t−)) = 1 and so the optimal hedge is φt ≡ 1 for all t. It is clear that, for this special

case, that VQ
t [ε(φt)] = 0. This is just the same buy-and-hold strategy as one uses in the pure

diffusion case. So we can hedge forward contracts i.e. linear contracts perfectly but non-linear

contracts (eg. options) are a different matter.

• It is clear that it is not possible to hedge non-linear contracts perfectly for the jump-diffusion

process we have considered.

• It is instructive to see if there are any special cases of our jump-diffusion process for which

perfect hedging of non-linear contracts is possible. It turns out that there are only two such

special cases:
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Hedging under jump-diffusion processes 9 p37/82

• The first special case is when there are no jumps i.e. ν(dx) = 0. Then the optimal hedge φt
becomes φt = ∂Ĉ

∂Ŝ
. This the just the standard delta hedge. Clearly, in this special case,

VQ
t [ε(φt)] = 0.

• The second special case is when σ = 0 and when it is only possible to have jumps of a

constant size a, say. Then ν(dx) = λδ(a), where δ denotes the Dirac delta function. Then the

the optimal hedge φt becomes:

φt =
Ĉ(t, Ŝ(t−) exp(a))− Ĉ(t, Ŝ(t−))

(exp(a)− 1)Ŝ(t−)
.

Again, it is easy to verify that, in this special case, VQ
t [ε(φt)] = 0. Note this model is clearly

financially unrealistic since the stock price can only move (σ = 0, so it has no Brownian

component) by a fixed amount (ignoring the deterministic drift).
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Hedging under jump-diffusion processes 10 p38/82

• Apart from these two special cases, perfect hedging of non-linear contracts is not possible.

• A market is called complete if it possible to perfectly hedge all derivatives. Since this is not

possible (except in the two special cases of our jump-diffusion process already mentioned), we

can conclude that our market is incomplete.

• Note that it may be theoretically possible to form a complete market, in some circumstances,

by extending the set of possible hedging instruments to include (a possibly infinite set of) other

derivatives such as vanilla options (and not just the stock price (or the forward stock price)).

• A derivative is called “redundant” if it can be replicated (which is just the same as hedging

with a minus sign) by a self-financing trading strategy in the underlying stock. Therefore, in a

complete market, all derivatives are redundant.
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• With jump-diffusion models, in general (i.e. except in the two special cases of our

jump-diffusion process), derivatives are not redundant. This means that if, for example, we

have written an exotic option then simpler options (such as vanilla options) have a role to play

in trying to reduce the hedging error associated with the exotic option.

• Monte Carlo simulation studies show that the hedging error can, often, be significantly reduced

by taking a static (i.e. a buy-and-hold) position in even a small number of vanilla options.

• The hedging error may be further reduced by allowing dynamic positions in the vanilla options

(although, in practice, since options have much wider bid-offer spreads than the underlying

stock, this may result in large transactions costs).
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• The most well-known and, in fact, the first jump-diffusion model is the Merton (1976) model.

We will examine a form of this model in greater depth later.

• It is the model above with the choice: ν(dx)
λ = 1

Σ
√

2π
exp(−1

2
(x−µ)2

Σ2 ), where µ and Σ are

constants (with Σ ≥ 0).

• Since this is the density of a Gaussian distribution, we see that the jump distribution is

Gaussian which, in turn implies that Xt, and hence also logS(t), is, conditional on the

number of jumps N(t) until time t, normally distributed.

• Unsuprisingly, this results in a very tractable model for which Monte Carlo simulation is

particularly straightforward.

• If the parameter µ (which is the mean jump size) is negative, it results in the distribution for

Xt being negatively skewed (which is typically what is observed in the equity options markets).
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From jump-diffusion processes to Lévy processes p41/82

• The defining feature of a compound Poisson process is that there are a finite number of jumps

in any finite time interval. We recognised this when we said we required λ (which is the

expected number of jumps per unit of time) to satisfy 0 < λ <∞. Recall that we wrote that

we draw an independent and identically distributed random variable J (which, as a special

case, could be a constant, not necessarily one - nor necessarily positive) from a given

distribution for which the probability of J being in the (Borel) set A is

Prob(J ∈ A) = ν(A)/λ, further implying ν(R) = λ.

• This means that the measure ν(dx) is not a true probability distribution (it integrates to λ -

and not one ) but it does integrate to one (and, therefore, is a true probability distribution)

when we normalise to one by dividing by λ (which we can do since λ is finite).

• This suggests that if we wish to go beyond compound Poisson processes, we need to consider

processes for which there are an infinite number of jumps in any finite time interval.
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• Definition:

• A Lévy process is a process Xt, t ≥ t0 ≡ 0, with Xt0 = 0, with the following three properties:

1./ Stationary increments:

The distribution of Xt+s −Xt, for any t ≥ 0, depends only on s and not upon t, for all s ≥ 0.

2./ Independent increments:

For every possible set of times 0 ≤ t1 < t2 ≤ t3 < t4, Xt4 −Xt3 is independent of Xt2 −Xt1.

3./ The following technical condition is satisfied: For all ε > 0,

lim
h→0

Prob(|Xt+h −Xt| ≥ ε) = 0.

• The third condition basically says that jumps happen at random times (and that for any given

time t, the probability of a jump occuring at time t is zero) and it rules out jumps at fixed or

non-random times.
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• Actually, compound Poisson processes (and jump-diffusion processes) satisfy all three of these

conditions so they are also examples of Lévy processes. However, in general, Lévy processes do

not need to have a finite number of jumps in any finite time interval as is required for

compound Poisson processes (and jump-diffusion processes).

• If they have an infinite number of jumps in any finite time interval, then they are called

“infinite activity” Lévy processes.

• We need a way of counting the number of jumps.
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Lévy measure p44/82

• Definition:

• Let Xt be a Lévy process. The Lévy measure ν is defined by:

ν(A) = E[#t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A].

In words, ν(A) is the expected number of jumps, per unit of time, whose size belongs to the

set A.

• The measure ν is not necessarily a finite measure but it is always finite on any compact set A

which does not include zero.

• In other words, a Lévy process can have an infinite number of infinitesimally small jumps but

only a finite number of jumps of finite size (else it would not satisfy condition 3./).

• This leads to the Lévy-Ito decomposition:
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Lévy-Ito decomposition p45/82

• Let Xt, t ≥ t0 ≡ 0, with Xt0 = 0, be a Lévy process and ν its Lévy measure:

• Then ν satisfies
∫∞
−∞min{1, x2}ν(dx) <∞. Furthermore:

• There exists γ and a Brownian motion Wt, with Wt0 = 0, with volatility σ, say, such that

Xt = γt + σWt + X`
t + lim

ε↘0
X̃ε
t ,

where X`
t is a compound Poisson process

∑N(t)
n=1,|Xs|≥1 ∆Xs, with X`

t0
= 0, (i.e. with jumps of

magnitude greater than or equal to one) and where X̃ε
t can be seen to be an infinite sum of

compensated (i.e. mean corrected so they are martingales) compound Poisson processes with

jumps whose magnitude is less than one and greater than or equal to ε.

• Furthermore, X`
t and X̃ε

t are independent (as is Wt).

• The intuition here is as follows: We have already shown that the sum of independent Poisson

processes is also a Poisson process. This suggests the idea of building blocks.
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• The intuition is:

• There are a finite number of jumps of magnitude greater than or equal to one (the threshold

does not have to be one - it could be any threshold strictly greater than zero). Represent them

as a compound Poisson process. There may be (and will be, if the Lévy process has infinite

activity) an infinite number of jumps of magnitude less than one. Their sum may not converge.

But if we compensate them (i.e. mean correct them), it turns out that the sum does converge.

• The term involving γ is, essentially, a “drift” term.

• Mathematically, we say that a Lévy process has infinite activity if:∫ 1

−1

ν(dx) =∞.
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Infinitely divisible distributions p47/82

• I have already defined what an infinitely divisible distribution is:

• A probability distribution, with characteristic function φ(z) is said to be infinitely divisible if,

for every integer n ≥ 1, φ(z) is also the nth power of a characteristic function.

• It is not difficult to see that all Lévy process must have an infinitely divisible distribution.

This is because, for any integer n ≥ 1,

Xt = Xt/n + [X2t/n −Xt/n] + . . . + [Xt −X(n−1)t/n],

and so, intutively, it is clear that:

Et0[exp(iz(Xt))] = Et0[exp(iz(Xt/n + [X2t/n −Xt/n] + . . . + [Xt −X(n−1)t/n]))]

= (Et0[exp(iz(t/n)(Xt/n))])n = (exp((t/n)Φ(z)))n,

by stationary and independent increments, for some function Φ(z), independent of t.
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• Setting n = 1, implies that the characteristic function of Xt must be of the form:

Et0[exp(iz(Xt))] = exp(tΦ(z)).

We see that Φ(z) is the “characteristic exponent” that I defined earlier.

• Now all we need is the form of the characteristic exponent.

• I previously wrote down (on slide “Jump-diffusion processes 5”) the form of the characteristic

exponent for a jump-diffusion process, namely:

izγ − 1

2
σ2z2 +

∫ ∞
−∞

(eizx − 1)ν(dx).
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• I also wrote down (on slide “Jump-diffusion processes 6”) the characteristic exponent of the

process Mt = Xt − λmJt, where mJ is the expectation of J , namely:

izγ − 1

2
σ2z2 +

∫ ∞
−∞

(eizx − 1− izx)ν(dx).

• Why?

• The Lévy-Ito decomposition says we can represent a Lévy process as drift plus Brownian

motion plus an independent compound Poisson process with jumps of magnitude greater than

or equal to one plus an infinite sum of compensated (i.e. mean corrected) independent

compound Poisson processes with jumps of magnitude less than one.

• The processes are all independent so characteristic functions multiply. Therefore,

characteristic exponents add.
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• Therefore, the characteristic exponent Φ(z) of any Lévy process Xt must be of the form:

Φ(z) = izγ − 1

2
σ2z2 +

∫ ∞
−∞

(eizx − 1)1|x|≥1ν(dx) +

∫ ∞
−∞

(eizx − 1− izx)1|x|<1ν(dx),

where 1 denotes the indicator function. This can also be expressed as:

Φ(z) = izγ − 1

2
σ2z2 +

∫ ∞
−∞

(eizx − 1− izx1|x|<1)ν(dx).

This formula is called the “Lévy-Khinchin” representation.

• It tells us, given the Lévy measure, how to compute the characteristic exponent of the Lévy

process.
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• There are several Lévy processes (eg. Variance Gamma, CGMY (named after Carr, Geman,

Madan and Yor), Normal Inverse Gaussian) which have become used in mathematical finance.

The only one we will have time to look at is the CGMY process. The CGMY process has a

Lévy measure defined by:

ν(dx) =
C exp(−M |x|)
|x|1+Y

, for x > 0, ν(dx) =
C exp(−G|x|)
|x|1+Y

, for x < 0,

where C > 0, M > 0, G > 0 and Y < 2 are constants (the condition Y < 2 is required to

ensure ν satisfies
∫∞
−∞min{1, x2}ν(dx) <∞).

• We can see that if M = G, then the Lévy measure is symmetric. So the difference between M

and G controls the asymmetry or skewness of the CGMY process.

• One can easily show (by checking whether
∫ 1

−1 ν(dx) =∞) that if Y ≥ 0, then the CGMY

process has infinite activity. If Y < 0, then the process has a finite number of jumps in a finite

time interval and is, therefore, a compound Poisson process.
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• We can compute the characteristic exponent of the CGMY process by using the

Lévy-Khinchin representation (it follows from some standard results involving the gamma

function - the gamma function is a special function in mathematics - a series representation

allows it to be rapidly computed - it generalises the factorial function to reals - for an integer

n, Γ(1 + n) = n!). Ignoring, for a moment, the drift and Brownian components, the

characteristic exponent is:

CΓ(−Y )((M − iz)Y −MY + (G + iz)Y −GY ).

• Note how simple it is (strictly speaking, the above formula only applies if Y 6= 0 and Y 6= 1 -

slightly different forms apply for these special cases although the characteristic exponent is

always well-behaved).

• The CGMY process has an interesting property. In the special case that we set M = 0, G = 0

and we let Y ↗ 2, the characteristic exponent tends to 4CΓ(−2)(−1
2z

2), which is the

characteristic exponent of Brownian motion. So CGMY includes Brownian motion as a

limiting case.
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• One can calibrate a CGMY process to the market prices of vanilla options.

• If you do this, you find that one can typically set the volatility σ of the Brownian motion

component to be zero and get just as good a calibration (or, more specifically, one gets just as

good a calibration in the case of infinite activity).

• This is not mathematically necessary, mathematically one can have σ > 0 (regardless of the

value of Y , Y < 2), - its an empirical observation.

• The intuition here is that the CGMY process is a very rich process. It can capture occasional

large jumps. Additionally, if Y ≥ 0 (so it has infinite activity), it can capture the idea of

infinitesimally small moves happening with infinite frequency - which, intuitively, is similar to

the effect of Brownian motion. Therefore, the separate Brownian motion component typically

becomes redundant.
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• If we want to model the dynamics of stock prices under Q, then as with the jump-diffusion

process, we model log prices.

• We assume that the stock price, S(t), at time t, with t ≥ t0 ≡ 0, Xt0 = 0, is:

S(t) = S(t0) exp((r − q)t) exp(Xt).

This is of the same general form as for the jump-diffusion process.

• Again, we must specify γ so that the drift rate on the stock, under Q, is equal to r − q, or

equivalently, so that EQ
t0

[exp(Xt)] = 1. This requires the choice:

γ = −1

2
σ2 −

∫ ∞
−∞

(ex − 1− x1|x|<1)ν(dx),

because then setting iz = 1 in the characteristic function shows that EQ
t0

[exp(Xt)] = 1.
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• When we use this value of γ, we call it the mean corrected characteristic function.

• It can be shown that all Lévy processes (except Browian motion with no jumps) generate

excess kurtosis which in turn implies they produce curvature in the implied volatility surface.

• They can produce (depending on the parameters of the process) skew in the implied volatility

surface (for the CGMY model, if M > G, we get negative skewness which is typically what is

observed in the equity options markets).

• In order to calibrate a Lévy process to market option prices, we need a fast way to price

vanilla options.

• Fortunately, such a way exists.
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• The value of an option, at time t0 ≡ 0, when the asset price is S(t0), whose payoff function is

min (S(T ), K), where S(T ) is the asset price at maturity T and K is the strike, is given by

f (S(t0), K, T ) =
1

π

√
S(t0)Ke−

T
2 (r+q)

∫ +∞

0

Re

(
eiuk

φT (−u− i/2)

u2 + 1/4

)
du,

=
1

π

√
S(t0)Ke−

T
2 (r+q)

∫ π

0

Re

(
ei tan(y/2)k/2ΦT

(
−1

2
tan
(
−y

2

)
− i

2

))
dy,

where k = log(K/S(t0))− (r − q)T , φT is the mean corrected characteristic function of the

Lévy process, and where in the second line we have made the substitution y = 2 arctan(2u).

• Call and put vanilla option prices, at time t0 ≡ 0, are given by S(t0)e−qT − f (S(t0), K, T )

and Ke−rT − f (S(t0), K, T ) respectively.

• The only reason for making the substitution y = 2 arctan(2u) is that it can sometimes be

convenient, when numerically integrating, to avoid having an infinite limit.
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• This formula can easily be implemented and can be used to price, say, 30 vanilla options in

less than around 50 milliseconds.

• I displayed several forms of the pricing PIDE for the case of a jump-diffusion process about 30

slides ago.

• It turns out that the forms which explicitly use the term k do not necessarily work for infinite

activity Lévy processes (this is a rather technical issue to do with the convergence of the

infinite number of jumps). However, the forms which do not explicitly use the term k, do

apply for all Lévy processes (including all cases of infinite activity).
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• The best form for numerical implementation is:

rC(t) =
∂C

∂t
+ (r − q − 1

2
σ2)

∂C

∂y
+

1

2
σ2∂

2C

∂y2

+

∫ ∞
−∞

(C(t, y + x)− C(t, y)− (ex − 1)
∂C

∂y
)ν(dx),

where y(t) ≡ logS(t).

• This pricing PIDE can be solved numerically to price exotic options.
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Girsanov’s Theorem for Lévy processes p59/82

• There is a form of Girsanov’s Theorem for Lévy processes.

• The only observation I make is this:

• In pure diffusion models, only the drift can change - the Brownian motion volatility σ never

changes.

• With processes with jumps, the Brownian motion volatility σ also never changes. However, in

general (there is the occasional exception) all the other parameters of a Lévy process can

change under a change of measure - not just the drift.

• In fact, a process which is a Lévy process in, say, a risk-neutral equivalent martingale measure

may not even be a Lévy process in the real-world physical measure.
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• Given that Lévy processes must have stationary and independent increments, a natural

question is what happens if we relax one of these requirements or more generally, how can we

move beyond Lévy processes and what might we achieve by doing so.

• A key observation is, because of the fact that the characteristic function of a Lévy process is

always of the form exp(tΦ(z)), where Φ(z) is independent of t, there are always parameters

which scale naturally with time.

• For Brownian motion, this parameter is σ2, for compound Poisson processes, it is λ, for

jump-diffusion processes, it is both σ2 and λ, for the CGMY process, it is C (and σ2 if

non-zero).

• One way to go beyond Lévy processes, is to introduce the idea of a stochastic time-change.

This can be thought of as a generalisation of stochastic variance (or stochastic volatility, as it

is usually called). This is a little more advanced than we can cover today (although, we will

briefly look at Cox processses in connection with jumps to default and credit risk which are

essentially the same idea).
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• A simpler way to move beyond Lévy processes is to have what is, essentially, a deterministic

time-change. This relaxes the requirement of stationary increments but keeps the requirement

of independent increments. This is essentially achieved by making the parameters, which scale

naturally with time, time-dependent i.e. make these parameters deterministic functions of

time t.

• We will do this for a jump-diffusion process with volatility σ(t) and intensity rate λ(t) at time

t, with 0 < σ(t) <∞ and 0 < λ(t) <∞, for all t ≥ t0 ≡ 0.

• A rough rule-of-thumb is that if we do this and we are interested in the distribution of the

process at a given time t (for example, pricing a vanilla (standard European) option), then if

we replace all previous references to σ2t and λt by
∫ t
t0
σ2(s)ds and

∫ t
t0
λ(s)ds then our

previous results are still valid (likewise we can introduce deterministic term structures of

interest-rates and dividend yields).

• Note this is definitely NOT true if pricing path-dependent options eg. barrier options.
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Time-inhomogenous jump-diffusion process p62/82

• Consider a time-inhomogeneous jump-diffusion process. We assume that, under Q, the stock

price, S(t), at time t, with t ≥ t0 ≡ 0, Xt0 = 0, evolves as:

S(t) = S(t0) exp(

∫ t

t0

(r(s)− q(s))ds) exp(Xt)

= S(t0) exp(

∫ t

t0

(r(s)− q(s))ds) exp(

∫ t

t0

γ(s)ds +

∫ t

t0

σ(s)Ws +

N(t)∑
n=1

J),

where r(t) is the instantaneous risk-free interest-rate and q(t) is the dividend yield at time t.

Furthermore, N(t), N(t0) = 0, is a time-inhomogeneous Poisson process with intensity rate

λ(t) at time t. It has independent (but not stationary) increments. The probability that

N(t) = n is given by:

Prob(N(t) = n) =
exp(−

∫ t
t0
λ(s)ds)(

∫ t
t0
λ(s)ds)n

n!
.
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• Note that Xt has independent increments (condition 2. of our definition of a Lévy process)

but it does not have stationary increments (condition 1. of our definition of a Lévy process).

We will refer to the process for Xt as a time-inhomogeneous jump-diffusion process.

• We need to specify the distribution of jumps J . We choose a special case of the Merton (1976)

model in which only one jump size is allowed and that size is −∞. By Ito’s lemma, we have:

dS(t)

S(t−)
= (r(t)− q(t) + γ(t))dt + σ(t)dWt + (exp(−∞)− 1)dN(t).

Or:

dS(t) = (r(t)− q(t) + γ(t))S(t−)dt + σ(t)S(t−)dWt − S(t−)dN(t).

• We see that when a jump occurs in N(t), the stock prices goes to zero and stays there forever.
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• The probability, under Q, that this does not occur by time t is the probability that there are

zero jumps in N(t) between time t0 ≡ 0 and time t, which is:

Prob(N(t) = 0) =
exp(−

∫ t
t0
λ(s)ds)(

∫ t
t0
λ(s)ds)0

0!
= exp(−

∫ t

t0

λ(s)ds).

Therefore, the probability that it does occur by time t is:

Prob(N(t) > 0) = 1− exp(−
∫ t

t0

λ(s)ds).

We can compute the characteristic function of Xt. It is:

EQ
t0

[exp(iz(Xt))] = EQ
t0

[exp(iz(

∫ t

t0

γ(s)ds +

∫ t

t0

σ(s)dWs +

N(t)∑
n=1

(−∞)))].
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•

EQ
t0

[exp(iz(Xt))] = exp(iz

∫ t

t0

γ(s)ds− 1

2
z2

∫ t

t0

σ(s)2ds)

{
(exp(−

∫ t

t0

λ(s)ds))EQ
t0

[EQ
t0

[exp(iz(

N(t)∑
k=1

(−∞)))|N(t) = 0]]

+ (1− exp(−
∫ t

t0

λ(s)ds))EQ
t0

[EQ
t0

[exp(iz(

N(t)∑
k=1

(−∞)))|N(t) > 0]]
}

= exp(iz

∫ t

t0

γ(s)ds− 1

2
z2

∫ t

t0

σ(s)2ds)

{
(exp(−

∫ t

t0

λ(s)ds)) exp(iz0) + (1− exp(−
∫ t

t0

λ(s)ds)) exp(iz(−∞))
}
.
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• Or:

EQ
t0

[exp(iz(Xt))] = exp(iz

∫ t

t0

γ(s)ds− 1

2
z2

∫ t

t0

σ(s)2ds)

{
(exp(−

∫ t

t0

λ(s)ds)) + (1− exp(−
∫ t

t0

λ(s)ds)) exp(iz(−∞))
}
.

(We cannot simplify further the term exp(iz(−∞)) as it is indeterminate if z is purely real).

• We must choose γ(t) so that the stock price S(t) has drift r(t)− q(t) under Q i.e. such that

EQ
t0

[exp((Xt))] = 1.

• It is easy to see, from the form of the characteristic function (with z = −i), that we must

choose:

γ(t) = −1

2
σ(t)2 + λ(t)
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• With this choice, we can see the dynamics of the stock price S(t) under Q are:

dS(t) = (r(t)− q(t) + λ(t))S(t−)dt + σ(t)S(t−)dWt − S(t−)dN(t).

Or:

S(t) = S(t0) exp(

∫ t

t0

(r(s)− q(s)− 1

2
σ(s)2 + λ(s))ds) exp(

∫ t

t0

σ(s)Ws +

N(t)∑
n=1

(−∞)).

• Note that we could also have established the same equations by using the equivalent formulae

we derived for the jump-diffusion process earlier and substituting the measure

ν(dx) = λ(t)δ(−∞), where δ denotes the Dirac delta function.
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• Observing the form of the last two equations, we see that until the time of the first jump in

N(t), the stock price dynamics resemble those of an asset whose dividend yield is effectively

q(t)− λ(t). Therefore, if we wish to price a vanilla call option, we can simply use the

Black-Scholes formula with the same adjustment. The price C(t0, S(t0), t), at time t0 ≡ 0, of

a vanilla call option which pays off max(S(t)−K, 0) at its maturity t is simply:

C(t0, S(t0), t) = EQ
t0

[exp(−
∫ t

t0

r(s)ds) max(S(t)−K, 0)]

= exp(−
∫ t

t0

λ(s)ds)EQ
t0

[exp(−
∫ t

t0

r(s)ds) max(S(t)−K, 0)|N(t) = 0]

+ (1− exp(−
∫ t

t0

λ(s)ds))EQ
t0

[exp(−
∫ t

t0

r(s)ds) max(S(t)−K, 0)|N(t) > 0]

= exp(−
∫ t

t0

λ(s)ds)
{
S(t0) exp(−

∫ t

t0

(q(s)− λ(s))ds)N(d1)−K exp(−
∫ t

t0

r(s)ds)N(d2)
}
.
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• This can also be expressed as:

C(t0, S(t0), t) = S(t0) exp(−
∫ t

t0

q(s)ds)N(d1)−K exp(−
∫ t

t0

(r(s) + λ(s))ds)N(d2),

where:

d1 =
log(S(t0)/K) +

∫ t
t0

(r(s)− q(s) + λ(s)− 1
2σ

2(s))ds +
∫ t
t0
σ2(s)ds√∫ t

t0
σ2(s)ds

,

d2 = d1 −

√∫ t

t0

σ2(s)ds.

• We have written down lots of equations but let us pause for intuition:
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• We have a stock price that follows geometric Brownian motion until the time of the first jump

in N(t) and afterwards it is identically equal to zero.

• This is essentially a model of default.

• We can say that, until the time of the first jump in N(t), the company, whose stock price we

are modelling, is solvent. At the instant that the first jump occurs in N(t), the company

becomes bankrupt and its shares are worthless.

• In other words, we model the time to default as the first time there is a jump in the process

N(t).
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• We can show an interesting result by examining the formula for the price C(t0, S(t0), t) of a

vanilla call option: It looks like the Black-Scholes formula with, essentially, an interest rate of

r(t) + λ(t). We know λ(t) > 0, for all t, and we know that the price of a call option increases

with increasing interest-rates, so we can say that the price of a vanilla call option on a stock

that is defaultable is worth more than the price of a vanilla call option on a stock that is

assumed to be non-defaultable, all other things being equal.

• This result was first proven in Merton (1976).

• We can obtain the price of a put option with the same strike and maurity by put-call parity:

It is C(t0, S(t0), t) + K exp(−
∫ t
t0
r(s)ds)− S(t0) exp(−

∫ t
t0
q(s)ds)

• Note that the prices of both call and put options do assume, that while the company

underlying the stock can default, the option writer cannot (for example, it might be an

exchange-traded option on an exchange with very good credit quality and, perhaps, some

collateral arrangements in force).

71



Time-inhomogenous jump-diffusion process 11 p72/82

• We have said that we can model the time to default as the first time there is a jump in the

process N(t).

• Let τ be the (random) time to default, with τ > t0 ≡ 0. Then:

Prob(τ > t) = Prob(N(t) = 0) = exp(−
∫ t

t0

λ(s)ds),

is simply the probability (under Q) that the stock does not default before time t.

• Suppose the company underlying the stock has issued a zero-coupon risky bond which

promises to pay one at maturity t. However, suppose, in the event of default, at or before time

t, it only pays δ, which is a constant with δ < 1, at maturity t. In the absence of arbitrage,

the price D(t0, t, δ), at time t0, of the risky bond must be:

D(t0, t, δ) = EQ
t0

[exp(−
∫ t

t0

r(s)ds) {Prob(τ > t)1 + (1− Prob(τ > t))δ}]

= exp(−
∫ t

t0

r(s)ds)

{
δ + (1− δ) exp(−

∫ t

t0

λ(s)ds)

}
.
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• Alternatively, if I could observe the price D(t0, t, δ) in the market, I could solve for

exp(−
∫ t
t0
λ(s)ds) via:∫ t

t0

λ(s)ds = log

(
1− δ

(D(t0, t, δ)/ exp(−
∫ t
t0
r(s)ds))− δ

)
.

• Furthermore, if I could observe the prices in the market of a number of such zero coupon risky

bonds with different maturities, and if I assumed some functional form for λ(t) (such as

piecewise constant in the time intervals defined by successive risky bond maturities), then I

could recursively solve for the functional form for λ(t), for all t, by using the above formula

sucessively for increasing t.

• Clearly, I need to know exp(−
∫ t
t0
r(s)ds) (which I can get as they are the prices of risk-free

zero coupon bonds) and I need to have an estimate of δ, the recovery in default (which I may

be able to get from historical data).
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• Having solved for λ(t), for all t, I could also solve for σ(t) (again, assumed piecewise

constant), for all t, by matching the market prices of vanilla stock options of different

maturities and a given strike (say, at-the-money-forward).

• We know that the model will generate an implied volatility which is negatively skewed

(although it may or may not accord closely with that observed in the market).

• We stress one feature of this model:

• Unlike, when we were modelling jump-diffusion processes and we needed to consider all the

jumps of N(t), in this default model, we are only interested in modelling the first jump of

N(t). At the time of the first jump of N(t), the stock price goes to zero and stays there and,

essentially, our pricing problem has finished.
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• One further point: The price D(t0, t, δ), at time t0, of the zero coupon risky bond is:

D(t0, t, δ) = exp(−
∫ t

t0

r(s)ds)

{
δ + (1− δ) exp(−

∫ t

t0

λ(s)ds)

}
= exp(−

∫ t

t0

r(s)ds) {δ + (1− δ)Prob(τ > t)} .

In words, the payoff of the zero coupon risky bond is equivalent to receiving a risk-free

payment of δ and an additional payment of 1− δ conditional on no default occuring before

time t. All payments are made at the bond maturity t. This assumption on the recovery is

called the recovery-of-treasury assumption (other assumptions are possible).
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• Suppose we have the special case that the recovery rate δ = 0. Then

D(t0, t, 0) = exp(−
∫ t
t0
r(s)ds) exp(−

∫ t
t0
λ(s)ds) and we see that λ(t) has an interpretation as

the spread between the yield on a risk-free zero coupon bond and the yield on a risky zero

coupon bond i.e. λ(t) is esssentially a measure of the credit-spread.

• This is intuitive but, at the same time, demonstrates a major shortcoming in our model.

Except at the time of default, the credit-spread is deterministic in our model. In practice,

credit-spreads demonstrate considerable volatility.

• In order to capture volatility in credit-spreads, we need to make λ(t) a stochastic process.

This leads to the idea of Cox processes.
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• A Cox process is, essentially, a Poisson process with a stochastic intensity rate λ(t). We need

λ(t) to be non-negative at all times. A possible process for λ(t) is the CIR/Heston square-root

process (other choices are possible).

• As before, we are interested in the time of the first jump of the Poisson process N(t). Let τ be

the (random) time to default, with τ > t0 ≡ 0. Then τ is modelled in the following way:

Prob(τ > t) = Prob(N(t) = 0) = EQ
t0

[EQ
t0

[Prob(N(t) = 0)|λ]]

= EQ
t0

[exp(−
∫ t

t0

λ(s)ds)],

and where, in the first line, we have written |λ to mean that we condition the expectation on

the whole path of λ(s) from t0 to t. More mathematically, we are conditioning on the

filtration generated by λ(s) from t0 to t, but, it does NOT include the filtration generated by

N(t) (else, we would certainly know whether default had occured by time t).
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• Note that, if we define φλ(z) by φλ(z) = EQ
t0

[exp(iz
∫ t
t0
λ(s)ds)], we can rewrite the last

equation as:

Prob(τ > t) = φλ(i).

• In other words, the probability of no default between t0 and t is simply the characteristic

function of the process
∫ t
t0
λ(s)ds, evaluated at z = i.

• If λ(t) follows a CIR/Heston square-root process, then the characteristic function φλ(z) is

known analytically.

• Furthermore, φλ(z) is also known analytically when λ(t) follows several other types of

non-negative processes.
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• We can repeat our previous analysis to obtain a formula for the price of a risky bond in the

Cox process model:

• We have a zero-coupon risky bond which promises to pay one at maturity t. However, in the

event of default, at or before time t, it only pays δ, which again is a constant with δ < 1, at

maturity t. In the absence of arbitrage, the price D(t0, t, δ), at time t0, of the risky bond must

be:

D(t0, t, δ) = EQ
t0

[exp(−
∫ t

t0

r(s)ds) {Prob(τ > t)1 + (1− Prob(τ > t))δ}]

= exp(−
∫ t

t0

r(s)ds) {δ + (1− δ)φλ(i)} .
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• Modelling with jumps introduces some additional mathematical complexity.

• As a general rule, using Ito’s lemma, Girsanov’s theorem or trying to directly solve a PDE (or

PIDE, more accurately) are less fruitful methodologies than in the pure diffusion case.

• The use of characteristic functions (and, more specifically, using them in connection with

Fourier and Laplace transform methods) is extremely fruitful - indeed the key method for

pricing options with jump processes.

• Monte Carlo simulation is also very useful - the books by Glasserman (Glasserman (2004)) ,

Schoutens (Schoutens (2003)) and Cont and Tankov (Cont and Tankov (2004)) all provide an

excellent introduction to this.

80



References p81/82
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