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Talk outline
• Stochastic Skew model of Carr and Wu.

• Stochastic time-changing by non-Gaussian 

OU processes (Barndorff-Nielsen and 

Shephard).

• An alternative specification to generate 

Stochastic Skew (ie stochastic risk-

reversals).

• Pricing barrier options and hybrids.

• Comparison of the different models / 

specifications.



FX and FX Options markets –

stylised empirical observations

• Volatility (both implied and historical) changes 

randomly, fx options markets imply skews / smiles, 

jumps in underlying are observed, distribution of fx

returns (or log changes) are fat-tailed - but NOT as 

fat as for equities.

• A key feature in fx options which is NOT observed 

in other markets is stochastic skew 

ie risk-reversals change in magnitude and actually 

also change sign on a moderately frequent basis 

(cf Equity options which are nearly always 

negatively skewed).



Stochastic Time-changing

• As a primer, it’s well-known that Heston can 

be thought of as a Brownian motion with a 

CIR time-change.

• A model consisting of Heston (perhaps, + 

jumps (ie the Bates model)) can capture the 

first set of empirically observed features but 

it cannot capture stochastic skew.

• To capture stochastic skew, Carr and Wu 

proposed their Stochastic Skew model.



Basic idea of Carr and Wu
• Consider a Levy process which is positively skewed 
(eg it can only jump up) and apply a stochastic time-
change via a CIR process.

• Consider a Levy process which is negatively skewed 
(eg it can only jump down) and apply a stochastic time-
change via a CIR process which is independent of the 
CIR process for the positively skewed component.

• Add the two together. Assume that these are the 
dynamics (with an appropriate choice of drift) of log fx
rate (under a risk-neutral EMM).

• Because the stochastic clocks on the positively skewed 
and negatively skewed components can run at different 
speeds in the future, the model can generate 
stochastic skew ie the sign and magnitude of risk-
reversals can change over time.



Is there an alternative to CIR?
• Stochastic time change by a CIR process has tended 
to dominate the literature.

• Unfortunately, in general, CIR is not very tractable. 
Specifically, despite the work of Broadie and Kaya, it is 
very difficult to Monte Carlo simulate CIR and hence 
Levy processes time-changed by CIR without 
discretisation error. 

=> tricky to accurately price exotics and get hedge 
ratios by MC simulation. 

In addition, for a particular combination of parameters 
(which is very often the case in practice), the stochastic 
vol. (or stochastic activity rate) hits zero infinitely often.

This is unrealistic on financial grounds (and the 
discretisation error becomes especially problematic).



Barndorff-Nielsen and Shephard
• By contrast, Ole Barndorff-Nielsen and Neil 
Shephard have proposed using non-
Gaussian OU processes.

• Basic idea – use an OU process with 
spectrally positive Levy process (ie it can 
only have upwards jumps (it must have no 
Brownian component and must have finite 
variation)).

• This process is interpreted as the square of 
instantaneous volatility or the activity rate of 
a stochastic clock ie a process to induce a 
stochastic time-change.



Non-Gaussian OU processes

• SDE is:

with                 and            ,             

where          is called the BDLP (Background 

Driving Levy Process) and 

is a strictly positive constant. Unusual timing 

(ie ) is so that the stationary distribution 

of         is independent of       .
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Non-Gaussian OU processes

• Must have that           is a subordinator ie a 

positive, increasing, finite variation process.

• Note that the SDE =>           only jumps up 

and then between jumps, it is deterministic 

and decays exponentially with time.

• Note             is always strictly positive since 

it is bounded below by

(which is > 0).
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Calculus for non-Gaussian OU 

processes

• Barndorff-Nielsen and Shephard show that the 

following important relationship must hold:

Levy density(x) of BDLP = -d/dx(x * Levy density(x) 

of law of stationary distribution)



• There is some freedom in what to choose as the 

BDLPs . 

• Two main choices for       .

• 1. Gamma-OU in which stationary distribution of             

is gamma distributed .

• Note that in the gamma-OU terminology, gamma 

refers to the stationary distribution – gamma does 

not refer to the distribution of the BDLP.

• In fact, the calculus result from last page => 

BDLP           is compound Poisson with 

exponentially distributed jumps =>          is finite 

activity Levy process. 
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• 2. TS-OU in which stationary distribution 

of          is TS (Tempered Stable) distributed.

• The characteristic function of the Tempered 
Stable (TS) distribution              , with       ,       
and     , is                           .

• The distribution is infinitely divisible and we 
define a TS stochastic process as the 
process which starts at zero, has 
independent and stationary increments and 
for which over the time period from      to      , 
the increment in the TS process follows a 

distribution.
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TS process continued
• The levy density of the                   process is:

• A TS process is related to the CGMY process in 
that a CGMY process can be thought of as the 
difference of two independent TS processes – or, to 
put it in a different way, it is the sum of two 
independent TS processes where one independent 
TS process provides positive (upward) jumps and 
the other has a minus sign in front of it so that it 
provides negative (downwards) jumps. 

• => CGMY can jump both up and down whereas TS 
only jumps up.
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TS-OU continued
• The result I quoted in the Calculus earlier 

implies that for the TS-OU specification:

• The BDLP            is the sum of a compound 

Poisson process and a TS                       process.

Since a TS process has infinite activity so does the 

BDLP          .

In fact, from the calculus for non-Gaussian OU 

processes, it is easy to show that the compound 

Poisson process component is a Poisson sum of 

gamma distributed random variables.
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• We introduce       such BDLP (background 

driving Levy processes) processes         (all 

independent of each other). 

• Define                            where             

for each     , 

ie is a weighted sum of stochastic 

variance terms, each of which follows a non-

Gaussian OU process. 
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• Our stochastic volatility term will simply be:

• Notation:

• We denote the initial time (today) by     . We 

denote the spot fx rate, at time     , by         , 

(number of units of domestic currency per 

unit of foreign currency). We denote the 

(cont. compounded) short rates, at time     , 

in the domestic and foreign currencies by       

and    respectively.
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SDE for BNS 2 specification

• We assume for specification BNS2 that the 

SDE (under an EMM) for the (log) spot fx rate 

is:

Note              and             are INDEPENDENT 

Brownian increments and           is a purely 

deterministic function of     (in practice, either 

constant or piecewise constant) .
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• We have in mind the case where             , with     

,              ,                ,             

(this is the specification we will consider (BNS2) but 
clearly other choices are possible). 

This specification can create a volatility smile which 
is roughly symmetric on the average (as fx smiles 
typically are) as well as both a positive and 
negative “leverage” effect. 

The spot fx rate can clearly have both positive 
(upward) and negative (downward) jumps.

When there are jumps in the fx rate, there are (in 
general) simultaneous jumps in the volatility (this 
seems realistic and highly intuitive). 
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• The previous specification, which we 

referred to as BNS2, is intuitive and flexible 

and can broadly capture the same empirical 

features as Heston + jumps.

• However, it CANNOT capture stochastic 

skew (ie stochastic risk-reversals). To do 

that we need another specification which we 

refer to as TCLP2 (short-hand for 2 Levy 

processes time-changed by 2 other Levy 

processes).



TCLP2 specification

• Instead of time-changing a Brownian motion, 

independently time change two independent 

Levy processes – one of which can only 

jump up and the other can only jump down.

• We denote the instantaneous activity rate, at 

time      , by          (intuitively this describes 

the flow of business time as opposed to 

calendar time). We assume that          follows 

a non-Gaussian OU process of the same 

form as before: 
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• with

and                    . 

Actually to avoid a degeneracy in the 

calibration, we set (without any loss of 

generality):

We define   
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• Can easily show from the SDE that for 

times      and       (where         ):                       

and
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• Then, for specification TCLP2, we assume that 
the dynamics (under an EMM) of the spot fx
rate are:

where           are spectrally positive Levy 
processes (can only jump up) and where

,               . As for       and      , could 
work with either (1)             ,

or (2)              ,
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Monte Carlo Simulation

• Now it is easy to simulate all these processes 

thanks to Rosinski (2001), (2002) We’ll focus 

on simulating TCLP2 as this is harder. 

• Define the state variables                   and 

in terms of which the 

integrated stochastic activity rate between 

two times      and       can be written: 
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• Then simulate spot fx rate via: 
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• So we need to simulate:

,               

Use results from Rosinski (2001) and 

Rosinski (2002).
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To simulate a                   process do:

• where        are exp(1),        and       are uniform 
U(0,1),       are the arrival times of jumps of a 
Poisson process with unit intensity (ie successive 
partial sums of exponentials with unit mean),

• And where             is any deterministic function.

• Note each series of random numbers is 
independent of each other.
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• Simulate a                       process using the last 

formula (with                           and                ). 

Add on a compound Poisson with gamma 

distributed jumps

• => get simulated                   , 

and hence                        and hence            , for 

each      .
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• To simulate                  use the infinite series again 

with       and       replaced by           and 

respectively (and this time with            

and               ).
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Again:

• Infinite series of terms which are positive 

and eventually decreasing. Can truncate 

after finite number of terms once a desired 

convergence tolerance (eg 10-11 or 10-14) 

has been achieved.

• One issue: How many terms are needed?
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• Answer: It is very, very sensitive to the value 

of      .

I chose some values of        and held             

constant. Then over 1000 simulations computed 

the average number of terms in the infinite series 

needed to converge to three different convergence 

tolerances (10-08, 10-11, 10-14) for a TS-OU process 

over a time period of one year.

The results are:

κ
κ κ1b



convergence tolerance

1.E-08 1.E-11        1.E-14

kappa mean number of terms

0.121                   3                 7                 17

0.321                  59               498             4930

0.521                 548             24077              ?

0.721                5334           481480             ?

0.921               32521             ?                    ?



Simulating Gamma-OU and TS-OU 

cases of BNS2

• TS-OU is very similar to TCLP2 but now we 

are time-changing a Brownian motion.

• Gamma-OU is even easier (just need to 

simulate compound Poisson).

• => can simulate all three different models / 

specifications (Gamma-OU BNS2, TS-OU 

BNS2, TCLP2), without discretization error, 

with just 20 to 25 lines of code (cf Heston).

• And that’s it !



Barrier options
• Suppose we wish to price barrier options. 

For discretely monitored barriers, there are 

no additional issues.

• What about barriers which are monitored 

continuously?

• In the case of Gamma-OU BNS2, we are 

simulating finite activity processes.

• => easy way to price barrier options by 

Monte Carlo simulation.  



Barrier options

• 1./ Simulate the fx rate to some chosen fixed dates. 

• 2./ Simulate the actual times of the jumps.

• 3./ Between jumps, the volatility is deterministic (actually 
decays exponentially). 

• 4./ Then we need probability that a Brownian bridge process 
constructed from a BM with a deterministic non-constant vol
hits a (in practice, usually a linear) barrier:

• 5./ But this is the same as the probability that a Brownian 
bridge process constructed from a BM with a constant 
volatility hits a (definitely) NON-LINEAR barrier:

• Then we are done.

• Note the chosen fixed dates in part 1./ may correspond to 
dates at which the risk-free rates and/or the purely 
deterministic vol changes.( )tXσ



Brownian Bridge

• Actually, the probability that a Brownian 

bridge process constructed from a BM with a 

constant volatility hits a non-linear barrier is 

not, in general, known in closed form but 

there are accurate and very fast numerical 

approximations (Roberts and Shortland

(1995) and Potzelberger and Wang (2001)).

• The accuracy of these approximations will 

deteriorate over long time-steps which is a 

reason to make them not too long.



Barrier options with TS-OU BNS2

• What about barrier options for the TS-OU version 

of BNS2? Wrote down infinite series:

• Note               are the simulated times of the jumps. 

Although there are actually an infinite number of 

jumps in a finite period of time, our truncation (at 

some pre-determined but tiny tolerance) makes the 

simulated number of jumps finite.

• Then proceed as with Gamma-OU version.

• But for kappa close to one, would be very slow.
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• For smallish values of kappa (< 0.3), have priced barrier 
options with convergence tolerances of 

either (1) 10-11 or (2) 10-14

and with max fixed time steps of 

either (a) one week or (b) three months.

With, eg, 650 million runs, one year option, there is no 
discernable difference in price estimates with the two 
different convergence tolerances and with the two different 
maximum lengths of fixed time-steps, suggesting this 
algorithm is very accurate.

• Where possible, it is desirable to calibrate model not only to 
vanillas but also to actively-traded barrier options (eg
double no-touch). This is certainly possible if we assume 
only smallish values of kappa (eg < 0.3) are allowed.



Calibration to market data
• Practical success of the algorithm depends on 
kappa being less than about 0.3, say.

• Calibrated Gamma-OU BNS2, TS-OU BNS2, 
TCLP2 and the Carr-Wu model to 

cable (USD/STG), USD/EUR, SFR/USD options (5 
different strikes, 12 different maturities) as of 22 
January 2007 using Fourier inversion.

• Note to reduce the number of parameters to be 
determined in the calibration, I pre-set kappa to be 
the same for each one of the pair of TS-OU 
processes and each one of the pair of TS 
processes which are time-changed (for TCLP2). 



Calibrated kappa values

TS-OU BNS2              TCLP2                     Carr-Wu (alpha/Y)

Cable
Kappa                              0.121                   0.227                               N/A
of OU processes

Kappa of indep.                 N/A                     0.191                             0.248
processes Ji(t)

USD/EUR
Kappa                              0.123                   0.121                               N/A
of OU processes

Kappa of indep.                 N/A                    0.214                             0.298
processes Ji(t)

SFR/USD
Kappa                              0.162                   0.151                               N/A
of OU processes

Kappa of indep.                 N/A                     0.198                             0.262
processes Ji(t)



Calibration to market data
• Note also set lambda parameter to be the same 

across the two different processes.

• For Gamma-OU, had 10 parameters to estimate ie

• For TS-OU, had 11 parameters to estimate ie

• For TCLP2, had 12 parameters to estimate ie

, for the OU processes              

for the independent processes

Note we set                      (slightly arbitrary).

• For Carr and Wu, had 10 parameters to estimate.
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Calibration continued
• Note that it would be possible to do a second 

“refinement” fit by utilising the Brownian motion with 

deterministic volatility (ie the                 term). We 

could make          piecewise constant in order to, for 

example, give a perfect fit to at-the-money options 

although we don’t do this here (where we did 

assume              , a constant,                            ).

• Results are:
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3 month cable USD/STG options
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6 month cable USD/STG options
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1 year cable USD/STG options
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Summary of fits
Gamma-OU BNS2          TS-OU BNS2      TCLP2              Carr-Wu

Cable

3.27                           2.67 1                     1.37                 

USD/EUR

5.52                           1.05 1                     1.04

SFR/USD

6.02                              1 1.13                 1.01

(Note fits are scaled to one so 1 indicates the best fit out of the four different 

models for each currency pair and the bigger the number the worse the fit)



Cross-currency/ interest-rate hybrid 

derivatives/long-dated fx options

• Can assume interest-rates in both domestic and 

foreign currencies are stochastic and driven by a 

Gaussian HJM model.

• Then everything goes through pretty much as 

before provided we assume that interest-rates are 

independent of the Brownian motion with the 

stochastic vol. term.

• We can capture correlation between rates and fx

through the Brownian motion term with 

deterministic volatility (ie term). ( ) ( )tdWt XXσ



Cross-currency/interest-rate hybrid 

derivatives/ long-dated fx options

• We could add jumps and stochastic volatility (as for 

fx, via a non-Gaussian OU process driven by a 

spectrally positive Levy process) to the dynamics of 

interest-rates (to capture IR vol. skew/smile). 

• As a topic for further research, we mention that we 

could make some of the jumps common (through 

the weightings       ) to both interest-rates and fx in 

order to capture co-dependence of movements 

between rates and fx (ie use a common or partially 

common stochastic time-change). 
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Conclusions
• Stochastic time-changes using non-Gaussian OU 
processes leads to a wide class of models which 
are:

• Intuitive, easy to implement.

• Allows for stochastic volatility and jumps (with either 
finite or infinite activity)

• Can give good fits to market prices of options.

• A subset of the models include ability to capture 
stochastic skew.

• Monte Carlo simulation, without discretisation error, 
is very straightforward => straightforward exotics 
pricing. 

• Works best if kappa parameter is not too large but 
this seems to the case in practice.
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1 year USD/EUR options
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