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Abstract. We examine the optimal hedging of derivatives written on realised variance, focussing

principally on variance swaps (but, en route, also considering skewness swaps), when the underlying

stock price has discontinuous sample paths i.e. jumps. In general, with jumps in the underlying, the

market is incomplete and perfect hedging is not possible. We derive easily implementable formulae

which give optimal (or nearly optimal) hedges for variance swaps under very general dynamics

for the underlying stock which allow for multiple jump processes and stochastic volatility. We

illustrate how, for parameters which are realistic for options on the S & P 500 and Nikkei-225 stock

indices, our methodology gives significantly better hedges than the standard log-contract replication

approach of Neuberger and Dupire which assumes continuous sample paths. Our analysis seeks to

emphasize practical implications for financial institutions trading variance derivatives.
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1. Introduction

The market for derivatives written on the variance of the price of an asset such as a stock has

grown substantially in recent years and with it the demand for robust and effective ways of hedging

such instruments.

Nearly all papers on variance swaps have focussed on the log-contract replication approach (eg.

Neuberger (1990), (1994), (1996), Dupire (1993), Demeterfi et al. (1999), Broadie and Jain (2008),

Carr and Lee (2010)). In essence, this approach works by noting that, under the assumption that

the stock price process has continuous sample paths, the payoff of a (continuously monitored)

variance swap can be perfectly hedged by a static position of being long two log-forward-contracts

and by a dynamic position of being short 2/S(t) units of stock, where S(t) is the stock price at time

t. In the assumed absence of arbitrage, this strategy also yields the price of the variance swap. We

will henceforth refer to this approach as the “standard 2 + 2 log-contract replication” approach.

However, this approach only works when the underlying stock price has continuous sample paths.

Even before the extreme events of Autumn 2008, in the wake of the collapse of Lehman Brothers,

nearly every empirical study (see Broadie et al. (2007), Carr et al. (2002) and the references

therein) had indicated the necessity of incorporating jumps into the dynamics of stocks and stock

index futures contracts. This became even more pertinent in Autumn 2008 as stock indices moved

by seven per cent or more in a day and the VIX contract (which is essentially a measure of the

volatility of the S & P 500 stock index) moved from a pre-crisis level of around 20 per cent to

around 70 per cent. Anecdotal stories suggest that a number of investment banks lost significant

amounts of money at this time on their variance derivatives books whilst a number of insurance

companies are reputed to have lost large sums on their positions in variable annuities (which are

effectively complex derivatives with significant exposure to forward volatility).

We will consider the optimal (or nearly optimal) hedging of variance swaps under very general

dynamics which allow for multiple jump processes, in the the price of the underlying stock or

stock index, as well as Brownian components and also for stochastic volatility (or, more generally,

(possibly, multiple) stochastic time-changes). Specifically, the dynamics can be those of (possibly,

multiple) time-changed Lévy processes (see Carr et al. (2003)). Although, we will focus on variance

swaps, we will, en route, also consider skewness swaps. Our methodology can easily be generalised

to other types of variance derivatives such as gamma swaps and self-quantoed variance swaps.

In related work, Carr and Lee (2009) show that, working with time-changed Lévy processes,

under stated assumptions, the price of a variance swap is equal to minus QX times the price of a

log-forward-contract, where QX , which they term the “multiplier”, depends only on the parameters

of the Lévy process(es) and not in any way upon the time-change. They show that QX is identically

equal to two if the (log of the) underlying stock price process is a (possibly, time-changed) Brownian

motion but is some number (in general) different from two if the (log of the) stock price process

is discontinuous - specifically, a (possibly, time-changed) Lévy process. In particular, Carr and
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Lee (2009) show that QX is greater than two for a negatively skewed Lévy process. We note

that these results have assumed greater significance since the global financial crisis of Autumn

2008. Before the financial crisis, market prices of variance swaps were close to minus two times the

prices of log-forward-contracts (where the latter were inferred from the market prices of co-terminal

vanilla options of as many strikes as were available as described in, for example, Demeterfi et al.

(1999)) which is in line with (or we might conjecture a self-fulfilling prophecy of) the standard

2 + 2 log-contract replication approach. In terms of Carr and Lee (2009), this is saying that before

the financial crisis, the “empirical” value (i.e. the value implied by dividing the market prices of

variance swaps by (minus) the prices of log-forward-contracts inferred from the market prices of

vanilla options) of the multiplier QX was approximately two. In the aftermath of the financial

crisis, this is no longer the case. Traders have reported to us that, since the financial crisis, for

variance swaps written on most major stock indices, the “empirical” value (i.e. the value implied

by market prices) of the multiplier QX has been consistently in the range 2.10 to 2.25. This is

illustrated in Crosby and Davis (2010) (to whom we refer the reader for more details) where they

note that the “empirical” value of the multiplier QX based on market transactions recorded on

10th December 2010 for variance swaps written on the Nikkei-225 stock index was approximately

2.175 - consistent with a significantly negatively skewed Lévy process (i.e. one with larger down

jumps).

Our paper builds upon Carr and Lee (2009) and also a revised and extended version of this

paper, Carr et al. (2010). Whilst these papers cover the pricing of variance swaps in detail,

only the revised paper discusses hedging and it does so only in the special cases when the Lévy

component of the dynamics of the log of the underlying stock price consists of either a Poisson

process with a single jump amplitude or consists of two Poisson processes each with a single jump

amplitude (which must have opposite sign to one another and with the intensity rates restricted

so as to generate piecewise constant sample paths) - both of which are cases when perfect hedging

is possible. These specific dynamics might, loosely speaking, be described as “toy” examples to

garner intuition. We also illustrate with “toy” examples to enhance intuition and extend the list

of those in which perfect hedging is possible. When perfect hedging is possible, the distance from

pricing to hedging is small. Therefore, more significantly, we consider much more general stock

price dynamics when perfect hedging is not possible.

Compared to Carr et al. (2010), the main new insights and contributions of our paper are as

follows:

• 1./ Working with more general dynamics than Carr et al. (2010), we analyse optimal (or

nearly optimal) hedges when perfect hedging is not possible. We link these hedges to the

characteristic function (and its derivatives) of the underlying Lévy process(es) and therefore

to the skewness (and other higher moments) of the Lévy process (which, in turn, relates to
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the distribution of jumps (and especially their asymmetry) in the underlying stock or stock

index).

• 2./ While the optimal (or nearly optimal) hedges that we will derive depend crucially upon

the parameters of the Lévy process(es) they do not (under stated assumptions) depend

upon the time-change. This is very convenient in that it gives our hedges a degree of

robustness to model mis-specification (of the time-change).

• 3./ We show that the standard 2 + 2 log-contract replication approach naturally appears

as the “small jump limit” of our more general analysis.

• 4./ We also (going beyond Carr et al. (2010)) consider the use of skewness swaps to hedge

variance swaps (or equivalently, the use of variance swaps to hedge skewness swaps).

• 5./ We also depart from Carr et al. (2010) by providing numerical examples which show

both the optimal hedges and measures of the residual error.

• 6./ Traders have reported to us that the use of the standard 2 + 2 log-contract replication

approach is currently universal within investment banks for hedging variance swaps. We

show via numerical results, for parameters which are realistic for options on the S & P 500

and Nikkei-225 stock indices, that the standard 2+2 log-contract replication approach is far

from optimal. By contrast, numerical results using our modelling framework demonstrate

significantly improved hedging performance.

• 7./ We illustrate how, when the multiplier QX is significantly different from two, then the

optimal (or nearly optimal) hedges obtained by our methodology depart significantly from

the standard 2 + 2 log-contract replication approach.

• 8./ We also illustrate the relative sizes of the hedging error due to imperfect hedging of the

Lévy component(s) of the underlying stock price dynamics and the hedging error due to

imperfect hedging of the stochastic time-change(s).

• 9./ We explain why our modelling framework has a degree of robustness to model

mis-specification and the possible presence, in practice, of transactions costs and to the

“criterion of optimality” chosen.

We now give the reader a taste of the “criterion of optimality” that we will use to compute

optimal hedges. Broadly speaking (we say “broadly speaking” because there is a slight twist which

we will describe at the end of section (3) - which is why we sometimes refer to “nearly optimal”

hedges), our criterion for choosing optimal hedges is by minimising the variance of the terminal

value of a self-financing trading strategy designed to hedge the derivative under consideration under

a risk-neutral measure Q, henceforth “minimising variance under Q”, (for general background, see

chapter ten of Cont and Tankov (2004)). This criterion has some advantages. One advantage is

that it results in a linear pricing rule which traders might prefer for variance swaps which are very

actively traded and are usually considered to be liquid “flow” derivatives (as opposed to highly

exotic derivatives). A disadvantage of this criterion is that it weights trading losses and gains
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equally. A new methodology for pricing and hedging derivatives, termed “pricing and hedging to

acceptability”, has recently been introduced (see Cherny and Madan (2009), (2010) and Madan

(2010) for details) which overcomes this disadvantage. While not the main focus of our paper, we

will illustrate numerically how the results obtained from “pricing and hedging to acceptability” are

qualitatively broadly in line with results from “minimising variance under Q” which suggests that

our results and conclusions have some degree of robustness to the “criterion of optimality” chosen.

Both of the “criteria of optimality” that we use model the dynamics under the risk-neutral measure

Q. We thank an anonymous referee for pointing out that, since empirical research (see, for example,

Broadie et al. (2007)) suggests that, for equity index options, jumps are larger in magnitude and/or

more frequent under the risk-neutral measure Q than under the real-world measure P, the optimal

(or nearly optimal) hedges that we derive may be a long way from minimising, for example, the

root-mean-square hedging error under P.

In our analysis, we will place a premium on hedging strategies which are relatively simple to im-

plement and have, at least, some degree of robustness to issues such as model mis-specification and

to market imperfections or practicalities such as the possible presence, in practice, of transactions

costs.

2. Model set-up

Let the initial time (today) be denoted by t0 ≡ 0 and calendar time by t, t ≥ t0. We make the

following assumption throughout this paper:

Assumption 2.1. Assume that there exists a market, in which a stock trades, which is free of

arbitrage. This guarantees the existence of a risk-neutral equivalent martingale measure which

will, in general, not be unique since the stock price will typically be assumed to be a process with

jumps. If non-unique, assume a risk-neutral equivalent martingale measure, denoted by Q, has

been chosen (possibly, via a calibration to market prices). Assume that markets are frictionless.

In particular, assume that there are no transactions costs and that continuous trading is possible.

Assume that interest-rates and the dividend yield on the stock are deterministic. Assume that we

can trade log-forward-contracts.

The ability to trade a continuum of co-terminal vanilla options is a sufficient condition to allow

us to trade log-forward-contracts. Since vanilla options will, in practice, not be available for all

strikes, this will involve a replication error but we will not discuss this error here since methods for

approximate, but, in practice, accurate, replication of log-forward-contracts by co-terminal vanilla

options with only a finite set of strikes have already been described in detail in Demeterfi et al.

(1999) and in Broadie and Jain (2008).

Note that the assumption above is exactly the same as in the standard 2 + 2 log-contract

replication approach of Neuberger (1990). However, unlike in that approach, the stock price is not

assumed to have continuous sample paths.
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Assumption 2.2. Assume that there exist K independent Lévy processes, denoted by X
(k)
t , for

k = 1, 2, . . . ,K, satisfying X
(k)
t0

= 0, each of which is assumed to be mean-corrected so that

exp(X(k)
t ) is a (non-constant) martingale, under Q, with respect to the natural filtration generated

by X
(k)
t i.e. that EQ

t0
[exp(X(k)

t )] = exp(X(k)
t0

) = 1 for all t ≥ t0. Assume that for all Υ satisfying

0 ≤ Υ ≤ 2, and for all k = 1, 2, . . . ,K, EQ
t0

[exp(ΥX(k)
t )] and EQ

t0
[exp(ΥX(k)

t )(X(k)
t )n] are finite, for

some t > t0, for all integers n satisfying 0 ≤ n ≤ 6. Let ψ(k)
X (z) denote (minus) the (mean-corrected)

characteristic exponent of X(k)
t , then:

EQ
t0

[exp(izX(k)
t )] ≡ exp(−(t− t0)ψ(k)

X (z)).(1)

The assumption of independence means that X(k)
t is independent of X(`)

t , if k 6= `.

For each k, let the volatility of the Brownian component W (k)
t (with W

(k)
t0
≡ 0) of the Lévy

process X(k)
t be denoted by σ(k), the Lévy measure by ν(k) and the Poisson random measure (as

defined in chapter 2 - see equation 2.90 - of Cont and Tankov (2004)) by µ(k). By the Lévy-Khinchin

formula, for each k, ψ(k)
X (z) can be written:

− ψ(k)
X (z) = −1

2
σ(k) 2(z2 + iz) +

∫ ∞
−∞

(exp(izx)− 1)ν(k)(dx)− iz
∫ ∞
−∞

(exp(x)− 1)ν(k)(dx).(2)

Note that equation (2) applies whether the jump component of X(k)
t has finite activity or infinite

activity and whether it has finite or infinite variation (in the latter case, one normally includes a

truncation term i.e. the second term in the Lévy-Khinchin formula (for the non-mean-corrected

case) is usually written
∫∞
−∞(exp(izx)−1−izx1|x|<1)ν(k)(dx) but the term izx1|x|<1 always cancels

under mean-correction).

For future reference, for each k, the deterministic quantity m(k)
X (iz) is defined via:

m
(k)
X (iz) ≡ iψ(k)′

X (z), where ′ denotes differentiation(3)

i.e. ψ
(k)′

X (z) ≡ ∂ψ
(k)
X (z)/∂z, ψ(k)′′

X (z) ≡ ∂2ψ
(k)
X (z)/∂z2, and further, for n ≥ 3, ψ(k),(n)

X (z) ≡

∂nψ
(k)
X (z)/∂zn.
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For future reference, we also define, for t ≥ t0, and for each k, the following four stochastic

processes:

J
(k)
1,t ≡

∫ t

t0

(
σ(k) 2 +

∫ ∞
−∞

x2µ(k)(dx)
)
du, J

(k)
2,t ≡

∫ t

t0

(
σ(k)dW (k)

u +
∫ ∞
−∞

xµ(k)(dx)du
)
,

J
(k)
3,t ≡

∫ t

t0

∫ ∞
−∞

x3µ(k)(dx)du, J
(k)
4,t ≡

∫ t

t0

(
σ(k)dW (k)

u +
∫ ∞
−∞

(exp(x)− 1)µ(k)(dx)du
)
.(4)

In order to construct the stock price process, the Lévy processes X(k)
t will be time-changed so

now the time-change processes, denoted by Y (k)
t , need to be defined:

Assumption 2.3. Assume that there exist K (possibly, deterministic) non-decreasing, continu-

ous time-change processes denoted by Y (k)
t , for each k = 1, 2, . . . ,K, each of which is a family of

stopping times and each of which is of the form Y
(k)
t =

∫ t
t0
y

(k)
s ds where the activity rate y(k)

t , for

each k = 1, 2, . . . ,K, must be non-negative. Assume, for each k = 1, 2, . . . ,K, that EQ
t0

[Y (k)
T ] <∞

and V arQ
t0

[Y (k)
T ] < ∞ (for T < ∞), that Y (k)

t → ∞ as t → ∞ and that Y (k)
t0

= t0 ≡ 0. In general

(but see assumption (2.7)), Y (k)
t may be correlated with X

(`)
t , for any ` = 1, 2, . . . ,K.

Remark 2.4. Assumption (2.3) allows the activity rate y
(k)
t (defined via Y

(k)
t =

∫ t
t0
y

(k)
s ds) to

follow, for example, a Heston (1993) square-root process, a non-Gaussian OU process (Barndorff-

Nielsen and Shephard (2001)) or it could follow the Heston (1993) plus jumps process of Duffie et

al. (2000). In the latter two cases, y(k)
t is discontinuous but Y (k)

t is continuous. We stress that it

is very important for our analysis that, for each k, Y (k)
t is continuous (which, to emphasise even

further, rules out Y (k)
t being, for example, a gamma process).

One further set of assumptions is made of a minor technical nature.

Assumption 2.5. Assume, for each k = 1, 2, . . . ,K, that for each ` = 1, 2, 3, 4, EQ
t0

[J (k)
`,T ] < ∞

and V arQ
t0

[J (k)
`,T ] < ∞ (for T < ∞) and, furthermore, that it is possible to decompose J (k)

`,t into

the sum of a martingale process J̃ (k)
`,t and a drift process J (k)

`,t . With analogous notation, a similar

assumption is made for Y (k)
t , for each k = 1, 2, . . . ,K (such decompositions are always possible

(under weak regularity conditions) by the Doob-Meyer decomposition theorem):

J
(k)
`,t ≡ J̃

(k)
`,t + J

(k)
`,t , for each ` = 1, 2, 3, 4, Y

(k)
t ≡ Ỹ (k)

t + Y
(k)
t , for each k = 1, 2, . . . ,K,(5)

where J̃ (k)
`,t and Ỹ (k)

t are martingales, under Q, with respect to their natural filtrations. In particular,

note for future reference that standard results (Cont and Tankov (2004)) imply:

J
(k)
1,t = (t− t0)ψ(k)′′

X (0), and J
(k)
3,t = (t− t0)(−iψ(k),(3)

X (0)), for each k = 1, 2, . . . ,K.(6)
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Now the price process for the underlying stock is constructed as follows. Let the risk-free interest-

rate (respectively, dividend yield on the stock), at time t, be denoted by r(t) (respectively, q(t))

(both assumed deterministic and finite). We haveK Lévy processesX(k)
t each satisfying assumption

(2.2) with X(k)
t0

= 0. We have K time-change processes Y (k)
t each satisfying assumption (2.3) with

Y
(k)
t0

= t0. For each k = 1, 2, . . . ,K, we time-change the Lévy process X(k)
t by Y (k)

t to get a process

X
(k)

Y
(k)
t

which we henceforth denote by X(k)
Yt

, with X
(k)
Yt0

= 0.

The stock price S(t), at time t, is assumed to have the following dynamics under Q:

S(t) = S(t0) exp(
∫ t

t0

(r(s)− q(s))ds) exp(
K∑
k=1

X
(k)
Yt

).(7)

Note that exp(
∑K

k=1X
(k)
Yt

) is a martingale, under Q, with respect to the filtration generated by

Ft ≡ σ{X(1)
Yu
, X

(2)
Yu
, . . . , X

(K)
Yu

, u ≤ t}. Henceforth, whenever we write an expectation in the form

EQ
t [•], we mean the expectation is conditional on the filtration Ft, at time t.

Remark 2.6. The stock price process assumed in equation (7) allows for many models used in

finance including, for example, the VG SAM, CGMY SAM and NIG SAM models of Carr et

al. (2003) as well as the jump-diffusion models of Merton (1976) and Kou (2002) (but not local

volatility type models). In some, if not many, cases of practical interest, it may be that K = 1.

We have allowed K > 1 in order to include the class of stochastic skew models of Carr and Wu

(2007) as well as some other models such as the Bates (1996) model and the “double jump model”

of Duffie et al. (2000) and of Broadie et al. (2007).

Assumption 2.7. Assumption (2.3) specifies the type of permissible time-change processes in

greatest generality. However, a number of our results only apply under more more restrictive

assumptions. We will indicate when these more restrictive assumptions are in force by referring to

the following:

• 1. It may sometimes be assumed that the time-change processes are common i.e. for all

k = 1, 2, . . . ,K, Y (k)
t = Yt, say, and y(k)

t = yt, say. This will be referred to as the “common

time-change” assumption. Note that when K = 1 (which is often the case for models of

practical interest), this assumption is not an extra assumption as it must automatically

hold.

• 2. It may sometimes be assumed that, for all k = 1, 2, . . . ,K and for all ` = 1, 2, . . . ,K,

X
(`)
t is independent of both Y

(k)
t and y

(k)
t . This will be referred to as the “independent

time-change” assumption.

• 3. It may sometimes be assumed that, for all k = 1, 2, . . . ,K, the time-change processes Y (k)
t

are deterministic (but not necessarily of the form Y
(k)
t = t and not necessarily common).

This will be referred to as the “deterministic time-change” assumption.
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We will now define the payoffs of the derivatives we will consider in this paper. We will consider

derivative contracts, maturing at time T , entered into at time t. We consider continuously moni-

tored variance swaps (henceforth VS), continuously monitored skewness swaps (henceforth SKS),

log-forward-contracts (henceforth LFC) whose payoffs, at time T , are (we omit any fixed legs):

lim
N→∞

N∑
j=1

(log(S(uj)/S(uj−1)))2, lim
N→∞

N∑
j=1

(log(S(uj)/S(uj−1)))3,

and log(F (T, T )/F (t, T )) ≡ log(S(T )/F (t, T )), respectively(8)

where F (t, T ) ≡ S(t) exp(
∫ T
t (r(s) − q(s))ds) is the forward stock price, at time t, and where

t ≡ u0 < u1 < . . . < uj−1 < uj < . . . < uN ≡ T defines any partition of [t, T ] for which

sup(uj − uj−1)→ 0 as N →∞ and whose prices, at time t, are respectively denoted by VS(t, T ),

SKS(t, T ) and LFC(t, T ). Using results from Carr and Lee (2009) and Crosby and Davis (2010),

we have:

VS(t, T ) = P (t, T )EQ
t [

K∑
k=1

∫ T

t
y(k)
u ψ

(k)′′

X (0) du] = P (t, T )
K∑
k=1

ψ
(k)′′

X (0)EQ
t [Y (k)

T − Y (k)
t ],

SKS(t, T ) = −iP (t, T )
K∑
k=1

ψ
(k),(3)
X (0)EQ

t [Y (k)
T − Y (k)

t ],

LFC(t, T ) = P (t, T )
K∑
k=1

m
(k)
X (0)EQ

t [Y (k)
T − Y (k)

t ], where P (t, T ) ≡ exp(−
∫ T

t
r(s)ds).(9)

Following Carr and Lee (2009) (and as is also evident from equation (9)), the price, at time t0, of

(the floating leg of) a variance swap is equal to −QX times the price, at time t0, of a log-forward-

contract (both maturing at time T ), where QX is defined by:

−QX ≡
∑K

k=1 ψ
(k)′′

X (0)EQ
t0

[Y (k)
T − Y (k)

t0
]∑K

k=1m
(k)
X (0)EQ

t0
[Y (k)
T − Y (k)

t0
]
. Note that QX > 0, since m(k)

X < 0, for all k.(10)

Remark 2.8. In particular, there is no up-front cost of entering into a position of being long one

variance swap (VS) and being long QX log-forward-contracts (LFC).

Remark 2.9. Under the “common time-change” assumption, the terms in EQ
t0

[Y (k)
T − Y (k)

t0
] cancel

and QX depends only upon the parameters of the Lévy processes:

−QX =
∑K

k=1 ψ
(k)′′

X (0)/
∑K

k=1m
(k)
X (0).

Carr and Lee (2009) show (in a sense they make precise) that QX is, respectively, less than two,

equal to two or greater than two according as whether the distribution of stock price returns, under

Q, is positively skewed, unskewed or negatively skewed (the latter being almost always the case,

in practice, for equity markets).
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3. Optimal mean-variance quadratic hedging of variance swaps

Our aim is to consider the optimal hedging of variance swaps when the price of the underlying

stock has jumps. We will actually consider hedging strategies for variance swaps which fall into

three possible types.

The first type of hedging strategy (labelled hedging strategy A) consists of hedging one VS with

a static position in LFC and a dynamic position in the underlying stock.

The second type of hedging strategy (labelled hedging strategy B) consists of hedging one VS

with a, possibly, dynamic position in LFC as well as a dynamic position in the underlying stock.

Whilst a dynamic position in the stock poses no problems, a dynamic position in LFC will involve

trading vanilla options, maturing at time T , at all strikes (as already indicated, in practice, only

a discrete set of strikes will be available). The bid-offer spread on options will, in practice, be at

least one order (perhaps, two orders) of magnitude higher (in price percentage terms) than that

on the underlying stock. This will mean, in practice, that a dynamic position in LFC may incur

significant transactions costs.

Remark 3.1. Of course, we have assumed from the outset (assumption (2.1)) that there are no

transactions costs. However, we wish to have a strategy which is robust to the assumptions made

in deriving it.

We will see that, in important special cases, hedging strategy B reduces to a static buy-and-hold

position in LFC (as well as dynamic trading in the stock), thus negating practical problems with

transactions costs arising from a dynamic position.

The third type of hedging strategy (labelled hedging strategy C) consists of hedging one VS with

a, possibly, dynamic position in LFC, a, possibly, dynamic position in SKS as well as a dynamic

position in the underlying stock. Skewness swaps (SKS) do not often trade and when they do, they

will have a much wider bid-offer spread than log-forward-contracts (LFC). So the same remarks

as we made for the second type of hedging strategy (hedging strategy B) also apply here and with

even greater validity. However, we will again see that, in important special cases, this strategy

also reduces to a static buy-and-hold position in LFC, a static buy-and-hold position in SKS (as

well dynamic trading in the stock). We remark that, although we will analyse this type from

the point of view of hedging a variance swap with skewness swaps, our analysis would trivially

carry over to solve the related problem of optimally hedging a skewness swap with variance swaps.

Using skewness swaps to hedge variance swaps was considered in Schoutens (2005) and found to

be reasonably effective but we will see that the strategy in Schoutens (2005) is, in general, not

optimal, and can be significantly improved upon.

So as to be able to cover all three types of hedging strategy above (A, B and C) without

repeating our analysis or rewriting relatively long equations, we will actually initially consider the
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most general problem of constructing a self-financing trading strategy by taking dynamic positions

in VS, in SKS, in LFC and in the underlying stock.

3.1. Mean-variance quadratic hedging of variance swaps - the general case. Our aim is

to optimally hedge variance swaps. We, initially, consider the problem in most generality from

which we will later derive simplified special cases.

We construct a self-financing trading strategy as follows: We commence the strategy at time

t0 ≡ 0. At each time t ∈ [t0, T ], we hold a position in ΘVS
t VS, in ΘLFC

t LFC and in ΘSKS
t SKS.

Additionally, we trade dynamically in the underlying stock. Specifically, for all t ∈ [t0, T ], we hold

a short position in ∆t units of stock. We state the value ε(T ), at time T , of our self-financing

trading strategy in the following proposition:

Proposition 3.2. The value ε(T ), at time T , of our self-financing trading strategy is:

ε(T ) ≡ εL(T ) + εC(T ),(11)

where (the subscripts “L” and “C” are mnemonics for “Lévy” and “clock” respectively)

εL(T ) ≡
∫ T

t0

ΘVS
u

K∑
k=1

dJ̃
(k)
1,Yu

+
∫ T

t0

ΘLFC
u

K∑
k=1

dJ̃
(k)
2,Yu

+
∫ T

t0

ΘSKS
u

K∑
k=1

dJ̃
(k)
3,Yu

−
∫ T

t0

∆uS(u−)
K∑
k=1

dJ̃
(k)
4,Yu

, where, for each ` = 1, 2, 3, 4, J̃ (k)
`,Yt
≡ J̃ (k)

`,Y
(k)
t

, J
(k)
`,Yt
≡ J (k)

`,Y
(k)
t

(12)

and εC(T ) ≡
∫ T

t0

K∑
k=1

(
ΘVS
u ψ

(k)′′

X (0) + ΘLFC
u m

(k)
X (0) + ΘSKS

u (−iψ(k),(3)
X (0))

)
dỸ (k)

u .(13)

Proof: Firstly, define a money market account B(t) = exp(
∫ t
t0
r(s)ds), t ≥ t0, and denote the

position in it, at time t, by ΘB
t . The zero net aggregate investment condition, at time u, (for

u ∈ [t0, T ]) reads:

0 = ΘB
uB(u) + ΘVS

u VS(u, T ) + ΘLFC
u LFC(u, T ) + ΘSKS

u SKS(u, T )−∆uS(u−).(14)

The easiest way to proceed is to note the additive nature of the VS, LFC and SKS payoffs and to

consider the contribution to ε(T ) over an infinitesimal time period u to u+du. The profit-and-loss

over the time period u to u+ du is:

ΘB
u r(u)B(u)du+ ΘVS

u

(
r(u)VS(u, T )du+

K∑
k=1

dJ
(k)
1,Yu

)

+ ΘLFC
u

( K∑
k=1

(
r(u)LFC(u, T )du+ dJ̃

(k)
2,Yu

+m
(k)
X (0)du

))

+ ΘSKS
u

(
r(u)SKS(u, T )du+

K∑
k=1

dJ
(k)
3,Yu

)
−∆uS(u−)

(
(r(u)− q(u))du+

K∑
k=1

dJ̃
(k)
4,Yu

+ q(u)du
)
.
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In the above, we have used Ito’s lemma. The final term involving ∆u is the profit-and-loss from the

position in the stock (with the final term q(u)du resulting from re-invested dividends). Substituting

from equation (14), the profit-and-loss over the time period u to u+ du is:

ΘVS
u

K∑
k=1

dJ
(k)
1,Yu

+ ΘLFC
u

K∑
k=1

(
dJ̃

(k)
2,Yu

+m
(k)
X (0)

)
+ ΘSKS

u

K∑
k=1

dJ
(k)
3,Yu

− ∆uS(u−)
K∑
k=1

dJ̃
(k)
4,Yu

= ΘVS
u

K∑
k=1

dJ̃
(k)
1,Yu

+ ΘLFC
u

K∑
k=1

dJ̃
(k)
2,Yu

+ ΘSKS
u

K∑
k=1

dJ̃
(k)
3,Yu
−∆uS(u−)

K∑
k=1

dJ̃
(k)
4,Yu

+
K∑
k=1

(
ΘVS
u ψ

(k)′′

X (0) + ΘLFC
u m

(k)
X (0) + ΘSKS

u (−iψ(k),(3)
X (0))

)
dỸ (k)

u ,(15)

where we have used equation (6). The result now follows by integrating from t0 to T . •

It is straightforward to see that, for any values of ΘVS
t , ΘLFC

t , ΘSKS
t and ∆t, we have: EQ

t0
[εL(T )] =

0, EQ
t0

[εC(T )] = 0 and EQ
t0

[ε(T )] = 0 which is very intuitive.

Broadly speaking, our aim will be to find the (assumed bounded) predictable processes ΘVS
t ,

ΘLFC
t , ΘSKS

t and ∆t such that the variance (under Q) of the residual hedging error is minimised.

With the aid of Ito’s isometry formula, we can calculate the variance, V arQ
t0

[ε(T )], under Q, of the

value ε(T ) of our self-financing trading strategy, which we state in the following proposition:

Proposition 3.3. Define

φt ≡ ∆tS(t−), then:

V arQ
t0

[ε(T )] = V arQ
t0

[εC(T )] + 2CovarQ
t0

[εC(T ), εL(T )] + V arQ
t0

[εL(T )],(16)

where V arQ
t0

[εL(T )] has the explicit form:

V arQ
t0

[εL(T )] =
K∑
k=1

EQ
t0

[
∫ T

t0

y(k)
u

(
φ2
u(−ψ(k)

X (−2i))− 2φu
(

ΘLFC
u (m(k)

X (1)−m(k)
X (0))

+ ΘSKS
u i(ψ(k),(3)

X (−i)− ψ(k),(3)
X (0)) + ΘVS

u (ψ(k)′′

X (−i)− ψ(k)′′

X (0))
)

+
(

ΘSKS2
u ψ

(k),(6)
X (0) + 2ΘSKS

u ΘVS
u iψ

(k),(5)
X (0)− 2ΘSKS

u ΘLFC
u ψ

(k),(4)
X (0)

− ΘVS2
u ψ

(k),(4)
X (0)− 2ΘVS

u ΘLFC
u iψ

(k),(3)
X (0) + ΘLFC2

u ψ
(k)′′

X (0)
))
du].(17)

To state more explicit forms for V arQ
t0

[εC(T )] and for CovarQ
t0

[εC(T ), εL(T )], it is useful to define:

Θ(1)
u ≡ ΘVS

u , Θ(2)
u ≡ ΘLFC

u , Θ(3)
u ≡ ΘSKS

u , and for each k = 1, 2, . . . ,K,

α1, k ≡ ψ
(k)′′

X (0), α2, k ≡ m
(k)
X (0), α3, k ≡ (−iψ(k),(3)

X (0)).(18)
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Then using square brackets to denote quadratic covariation:

V arQ
t0

[εC(T )] = EQ
t0

[
∫ T

t0

3∑
i=1

3∑
j=1

Θ(i)
u Θ(j)

u

K∑
k=1

K∑
`=1

αi, kαj, `
[
Ỹ

(k)
• , Ỹ

(`)
•
]
u
du], and(19)

CovarQ
t0

[εC(T ), εL(T )] = EQ
t0

[
∫ T

t0

3∑
i=1

3∑
j=1

Θ(i)
u Θ(j)

u

K∑
k=1

K∑
`=1

αi, k
[
J̃

(k)
i,Y•

, Ỹ
(`)
•
]
u
du

−
∫ T

t0

3∑
i=1

Θ(i)
u φu

K∑
k=1

K∑
`=1

αi, k
[
J̃

(k)
4,Y•

, Ỹ
(`)
•
]
u
du].(20)

Proof: Use Ito’s isometry formula and then simplify using equation (2). •

Remark 3.4. Note that equation (16) implies that V arQ
t0

[ε(T )] is a non-negative quadratic function

of ΘVS
t , ΘLFC

t , ΘSKS
t and ∆t (and φt). Note further that equations (11) and (16) apply for any

choices of the (assumed bounded) predictable processes ΘVS
t , ΘLFC

t , ΘSKS
t and ∆t.

For reasons that will become clearer later, in cases of practical interest, V arQ
t0

[εL(T )] can often

be evaluated simply by computing the first six derivatives of ψ(k)
X (z) as well as ψ(k)

X (−2i), for each k,

which is typically (eg. CGMY (Carr et al. (2003)), Kou (2002) double-exponential jump-diffusion

model) trivial and by computing EQ
t0

[
∫ T
t0
y

(k)
u du] = EQ

t0
[Y (k)
T − Y (k)

t0
] which is often (for example, in

those cases cited in remark (2.4)) known in closed form.

Note that CovarQ
t0

[εC(T ), εL(T )] will be identically equal to zero under the “independent time-

change” assumption. Furthermore, note that both V arQ
t0

[εC(T )] and CovarQ
t0

[εC(T ), εL(T )] will be

identically equal to zero if either:

ΘVS
u ψ

(k)′′

X (0) + ΘLFC
u m

(k)
X (0) + ΘSKS

u (−iψ(k),(3)
X (0)) = 0, for all k and for all u ∈ [t0, T ],(21)

or if the “common time-change” assumptions holds and
K∑
k=1

(
ΘVS
u ψ

(k)′′

X (0) + ΘLFC
u m

(k)
X (0) + ΘSKS

u (−iψ(k),(3)
X (0))

)
= 0, for all u ∈ [t0, T ],(22)

or if the “deterministic time-change” assumption holds.

The above equations present our problem in greatest generality but issues, already remarked

upon, of liquidity, availability of hedging instruments and transactions costs (see remark (3.1))

may mean that we should look for simplifications. We will consider the problem from the point of

view of hedging a static position in variance swaps - more precisely, we hedge a static position of

being long one VS, so we set ΘVS
t = 1, for all t ∈ [t0, T ]. We will examine hedging strategies A, B

and C in detail. We will wish to find the values, at time t, of the portfolio weights (∆t ≡ φt/S(t−)

and, when appropriate, ΘLFC
t and ΘSKS

t ) which, broadly speaking, minimise the variance of our

self-financing trading strategy and we can do this by differentiating the variance with respect to the

relevant portfolio weight(s) and setting the resulting equation(s) to zero. We will use the notation

that when we have computed the optimal values, we will denote them by ∆̂t ≡ φ̂t/S(t−) (and,

when appropriate, Θ̂LFC
t and Θ̂SKS

t ) i.e. by using the hat symbol.
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It is certainly possible to differentiate equation (16) as written above in full generality. However,

partly because the forms of V arQ
t0

[εC(T )] and CovarQ
t0

[εC(T ), εL(T )] are not very explicit and partly

for reasons that will become apparent later, what we will actually do is consider two possible

variants, which we label variants (a) and (b).

• In variant (a), which we describe in detail, for each of the hedging strategies A, B and C,

in section (4), we will actually seek to minimise V arQ
t0

[εL(T )]. What we will see is that, in some

cases of interest, it turns out that V arQ
t0

[εC(T )] and CovarQ
t0

[εC(T ), εL(T )] happen to be equal to

zero and hence minimising V arQ
t0

[εL(T )] results in a value of V arQ
t0

[ε(T )] equal to V arQ
t0

[εL(T )].

Additionally, in an important special case, hedging strategies B and C will be seen to reduce to

static buy-and-hold positions in LFC and SKS (hedging strategy A is always so by construction).

• In variant (b), which we describe in section (5), we seek to minimise V arQ
t0

[ε(T )]. This variant

is theoretically much more appealing, of course - after all, it is V arQ
t0

[ε(T )] (and not V arQ
t0

[εL(T )])

which is a measure of the total residual hedging error. However, what we will see is that there is a

major practical disadvantage to this variant - namely that (except under the “deterministic time-

change” assumption - and even then only when the “common time-change” assumption additionally

holds), hedging strategies B and C never reduce to static buy-and-hold positions in LFC or SKS

which makes these strategies vulnerable, in practice, to the impact of transactions costs (see remark

(3.1)). Clearly, under the “deterministic time-change” assumption, variants (a) and (b) amount to

the same thing.

4. Variant (a): Minimising V arQ
t0

[εL(T )]

In this section, we will consider variant (a) i.e. the problem of minimising V arQ
t0

[εL(T )] (defined

via equations (12) and (17)), for each of the three hedging strategies A, B and C (defined in section

(3)). We set ΘVS
t = 1 throughout. Essentially, we differentiate V arQ

t0
[εL(T )] (given by equation

(17)) with respect to φt, with respect to ΘLFC
t and with respect to ΘSKS

t and set the resulting

equations to zero. We obtain:

−
K∑
k=1

y
(k)
t (ψ(k)′′

X (−i)− ψ(k)′′

X (0)) = Θ̂LFC
t

( K∑
k=1

y
(k)
t (m(k)

X (1)−m(k)
X (0))

)
+ φ̂t

( K∑
k=1

y
(k)
t ψ

(k)
X (−2i)

)

− Θ̂SKS
t

( K∑
k=1

y
(k)
t (iψ(k),(3)

X (−i)− iψ(k),(3)
X (0))

)
,

K∑
k=1

y
(k)
t iψ

(k),(3)
X (0) = Θ̂LFC

t

( K∑
k=1

y
(k)
t ψ

(k)′′

X (0)
)
− φ̂t

( K∑
k=1

y
(k)
t (m(k)

X (1)−m(k)
X (0))

)

− Θ̂SKS
t

( K∑
k=1

y
(k)
t ψ

(k),(4)
X (0)

)
,
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−
K∑
k=1

y
(k)
t iψ

(k),(5)
X (0) = −Θ̂LFC

t

( K∑
k=1

y
(k)
t ψ

(k),(4)
X (0)

)
+ φ̂t

( K∑
k=1

y
(k)
t (iψ(k),(3)

X (−i)− iψ(k),(3)
X (0))

)

+ Θ̂SKS
t

( K∑
k=1

y
(k)
t ψ

(k),(6)
X (0)

)
.(23)

This gives us a 3X3 system of simultaneous linear equations (in general - for hedging strategies

A and B they reduce to 1X1 and 2X2 respectively). Provided the determinant of the linear

system is non-zero, we can solve for the optimal values φ̂t, Θ̂LFC
t and Θ̂SKS

t . We do not give the

explicit solutions since they are quite long and it would add little in intuition. However, even

without writing down the explicit solutions, it is clear from casual inspection of equation (23) that,

whenever the “common time-change” assumption is in force, the y(k)
t terms cancel throughout.

Remark 4.1. The fact that the y(k)
t terms cancel throughout implies that Θ̂LFC

t , Θ̂SKS
t and φ̂t are

constant and, so in particular, hedging strategies A, B and C all reduce to a static buy-and-hold

position in LFC and in SKS. As already alluded to (see remark (3.1)), static buy-and-hold (as

opposed to dynamic) positions imply a degree of robustness to the possible presence, in practice,

of transactions costs. Furthermore, the optimal values Θ̂LFC
t , Θ̂SKS

t and φ̂t do not depend upon the

time-change process in any way which gives a considerable degree of robustness to model

mis-specification (of the time-change). We stress that the conclusions contained within the confines

of this remark (while certainly requiring the “common time-change” assumption) are valid without

assuming that the “independent time-change” or the “deterministic time-change” assumptions are

in force. This parallels results in Carr and Lee (2009) (see also remark (2.9)).

4.1. Hedging strategy A: Hedging variance swaps with a static position in log-forward-

contracts. We now consider hedging strategy A in more detail. Since we do not use skewness

swaps for this hedging strategy, we set ΘSKS
t = 0, for all t ∈ [t0, T ]. Additionally, we wish to

have only a static buy-and-hold position in LFC. Motivated by equation (10) and remark (2.8), we

choose ΘLFC
t = QX , for all t. To find the portfolio which minimises V arQ

t0
[εL(T )], we can simply

solve the first sub-equation of equation (23) for φ̂t. We find that the optimal value φ̂t ≡ ∆̂tS(t−)

which minimises V arQ
t0

[εL(T )] is:

φ̂t =
∑K

k=1 y
(k)
t (ψ(k)′′

X (−i)− ψ(k)′′

X (0)) +QX
∑K

k=1 y
(k)
t (m(k)

X (1)−m(k)
X (0))

−
∑K

k=1 y
(k)
t ψ

(k)
X (−2i)

.(24)

Note that under the “common time-change” assumption (which must automatically hold when

K = 1), we can see (using equation (10) which implies that QX = −
∑K

k=1 ψ
(k)′′

X (0)/
∑K

k=1m
(k)
X (0)

in this special case) that equation (22) is satisfied. This means that:

V arQ
t0

[εC(T )] = CovarQ
t0

[εC(T ), εL(T )] = 0 and the optimal value φ̂t in equation (24) not only

minimises V arQ
t0

[εL(T )] - it results in a value of V arQ
t0

[ε(T )] equal to V arQ
t0

[εL(T )].
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Remark 4.2. We now consider equation (24) in two special cases, labelled A1 and A2.

First case A1:

The first special case is when all K Lévy processes are Brownian motions. We find that QX = 2

and φ̂t = QX = 2 which agrees with standard results (Neuberger (1990)). Clearly, V arQ
t0

[εL(T )] = 0

in this special case and furthermore (from equation (21)) V arQ
t0

[ε(T )] = 0 and so we have a perfect

hedge.

Second case A2:

The second special case is when K = 1 and the Lévy process is a compound Poisson process

(with no diffusion component), with intensity rate λ1 under Q and with a fixed jump amplitude

a1. We have ψ(1)
X (z) = −λ1(exp(iza1) − 1 − iz exp(a1) + iz), m(1)

X (0) = −λ1(exp(a1) − 1 − a1)

and ψ
(1)′′

X (0) = λ1a
2
1. Hence QX ≡ −ψ

(1)′′

X (0)/m(1)
X (0) = a2

1/(exp(a1) − 1 − a1). Substituting,

we get: φ̂t = a2
1/(exp(a1) − 1 − a1). We see that φ̂t = QX . It is straightforward to verify that

V arQ
t0

[εL(T )] = 0 and that, furthermore, (from equation (22)) V arQ
t0

[ε(T )] = 0 in this special case

- in other words, we have a perfect hedge.

It is well-known that when the log of the stock price follows either Brownian motion or a

compound Poisson process with a fixed jump amplitude, then the market is complete and it is

possible to perfectly hedge all contingent claims. Here we can also allow for a stochastic time-

change (or indeed multiple stochastic time-changes for special case A1) and hence our market is, in

general, not complete. It is not possible to perfectly hedge all contingent claims but it is possible

to hedge variance swaps perfectly by taking a static buy-and-hold position in LFC and a dynamic

position in the underlying stock in the two special cases A1 and A2 just outlined.

It is worthy of note that in both these special cases A1 and A2, the optimal value φ̂t which

minimises V arQ
t0

[ε(T )] is equal to QX and hence also equal to ΘLFC
t .

It is also interesting to consider what happens in special case A2 when the fixed jump amplitude

a1 is very small. Then, expanding the exp function in a power series:

φ̂t = QX =
a2

1

(exp(a1)− 1− a1)
≈ 2

(1 + (a1/3))
.

We see that when a1 is small but positive, φ̂t = QX is just below two and when a1 is small but

negative, φ̂t = QX is just above two. In either case, as a1 → 0, QX → 2, φt → 2, which is the

same as the case of Brownian motion. We can see that the standard 2 + 2 log-contract replication

approach naturally appears as the “small jump limit” of our more general analysis.

4.2. Hedging strategy B: Hedging variance swaps with a (possibly) dynamic position

in log-forward-contracts. We now consider hedging strategy B. To find the portfolio which

minimises V arQ
t0

[εL(T )], we can simply solve the first two sub-equations of equation (23) (with

ΘSKS
t = 0 for all t) for φ̂t and Θ̂LFC

t .
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For brevity, we do not give the explicit solutions in the general case here since they are quite

long but they are trivial to compute numerically.

Remark 4.3. We will however briefly consider the solution in two special cases, labelled B1 and

B2. In both these special cases, we make the “common time-change” and the “deterministic time-

change” assumptions.

First case B1:

The first special case is when one of the Lévy processes is a compound Poisson process, with

intensity rate λ1 under Q and with a fixed jump amplitude a1, and the remaining K − 1 Lévy

processes are Brownian motions (which could be combined into a single Brownian motion in the

obvious way). After substituting the relevant characteristic functions, we find that the values φ̂t

and Θ̂LFC
t which minimise V arQ

t0
[εL(T )] are:

φ̂t =
a2

1

(exp(a1)− 1− a1)
, and Θ̂LFC

t =
a2

1

(exp(a1)− 1− a1)
.(25)

Note that these values are of the same form as those obtained in special case A2 and that φ̂t and

Θ̂LFC
t are equal and they do not depend on λ1 or on the volatilities associated with the Brownian

motions.

Second case B2:

The second special case is when K = 2 and the Lévy processes are both compound Poisson

processes (with no diffusion component) (whose intensity rates, under Q, are denoted by λ1 and

λ2) with fixed jump amplitudes (which we denote by a1 and a2 respectively, with a1 6= a2 (to avoid

a degeneracy)). After some straightforward algebra, we find:

φ̂t =
a2

1a2 − a1a
2
2

a2(exp(a1)− 1)− a1(exp(a2)− 1)
, and Θ̂LFC

t =
a2

1(exp(a2)− 1)− a2
2(exp(a1)− 1)

a2(exp(a1)− 1)− a1(exp(a2)− 1)
.

Note that φ̂t and Θ̂LFC
t do not depend on λ1 or on λ2.

It is straightforward (if a little tedious) to verify that, in both our special cases B1 and B2, that,

if we compute the variance V arQ
t0

[ε(T )] of our self-financing trading strategy, with the respective

values of Θ̂LFC
t and φ̂t, we find that V arQ

t0
[εL(T )] = 0 and hence V arQ

t0
[ε(T )] = 0 - in other words,

we again have a perfect hedge.

For the second case, we also consider the following limiting case. We set a1 = a, a2 = −a, where

a > 0 is very small. Then, expanding the exp function in a power series, we find after some algebra

that:

Θ̂LFC
t ≈

2(1 + a2

6 )

1 + a2

12

≈ 2(1 +
a2

12
), φ̂t ≈

2
1 + a2

12

≈ 2(1− a2

12
).

As a→ 0, Θ̂LFC
t → 2 and φ̂t → 2, which is the same as the case of Brownian motion.



18 JOHN CROSBY

4.3. Hedging strategy C: Hedging variance swaps with a (possibly) dynamic position

in log-forward-contracts and skewness swaps. We now briefly consider hedging strategy C.

Remark 4.4. We will briefly consider the solution in two special cases, labelled C1 and C2. In

both these special cases, we make the “common time-change” and the “deterministic time-change”

assumptions.

First case C1:

The first special case is when two of the Lévy processes are compound Poisson processes, with

fixed jump amplitudes a1 and a2 repectively (with a1 6= a2 (to avoid a degeneracy)), and the

remaining K − 2 Lévy processes are Brownian motions (which could be combined into a single

Brownian motion in the obvious way). For brevity, we do not write down the explicit solutions for

Θ̂LFC
t and φ̂t but the optimal value Θ̂SKS

t can be shown with some algebra, to be given by:

Θ̂SKS
t =

a2
1(exp(a2)− 1− a2)− a2

2(exp(a1)− 1− a1)
a3

2(exp(a1)− 1− a1)− a3
1(exp(a2)− 1− a2)

.

We also consider the following limiting case. We set a1 = a, a2 = −a, where a > 0 is very small.

Then, expanding the exp function in a power series, we get:

Θ̂SKS
t ≈ 1

3

(
1 + a2

20

1 + a2

12

)
≈ 1

3

(
1− a2

30

)
.

Hence as a→ 0, Θ̂SKS
t → 1/3 which can be compared to a result in Schoutens (2005) obtained by

a completely different methodology. In the same limit, we can also show that φ̂t → 2, Θ̂LFC
t → 2.

Second case C2:

The second special case is when K = 3 and the Lévy processes are all compound Poisson

processes (with no diffusion component), with fixed jump amplitudes (which we denote by a1, a2

and a3 respectively, with a1 6= a2 6= a3 (to avoid a degeneracy)). The explicit solutions are omitted

for brevity but, it can be shown that, in the limit that |a1| → 0, |a2| → 0 and |a3| → 0, then

Θ̂SKS
t → 1/3, and φ̂t → 2, Θ̂LFC

t → 2.

It is straightforward (if a little tedious) to verify that, in both our special cases C1 and C2, that,

if we compute the variance V arQ
t0

[ε(T )] of our self-financing trading strategy, with the respective

values of Θ̂LFC
t , Θ̂SKS

t and φ̂t, we find that V arQ
t0

[εL(T )] = 0 and hence V arQ
t0

[ε(T )] = 0 - in other

words, in both special cases C1 and C2, we again have a perfect hedge.

We also see that the approach of Schoutens (2005), which essentially sets φt = 2, ΘLFC
t = 2 and

ΘSKS
t = 1/3, naturally appears as the “small jump limit” of our more general analysis.

5. Variant (b): Minimising V arQ
t0

[ε(T )]

In section (4), we considered variant (a) i.e. the problem of minimising V arQ
t0

[εL(T )]. Of course,

it would be theoretically more appealing to seek to minimise V arQ
t0

[ε(T )] rather than V arQ
t0

[εL(T )].

In this section, we will now consider the impact of seeking to minimise V arQ
t0

[ε(T )] on hedging
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strategy A and hedging strategy B (we could do likewise for hedging strategy C but we will omit

this case for brevity). We set ΘVS
t = 1, ΘSKS

t = 0, for all t ∈ [t0, T ], in equation (16).

5.1. Hedging strategy A for the case of minimising V arQ
t0

[ε(T )]. We again (motivated by

remark (2.8)) choose ΘLFC
t = QX , for all t ∈ [t0, T ], in equation (16). We then differentiate it

with respect to φt and set the resulting equation to zero. We find that the optimal value φ̂t which

minimises V arQ
t0

[ε(T )] is:

φ̂t =
∑K

k=1 y
(k)
t (ψ(k)′′

X (−i)− ψ(k)′′

X (0)) +QX
∑K

k=1 y
(k)
t (m(k)

X (1)−m(k)
X (0))

−
∑K

k=1 y
(k)
t ψ

(k)
X (−2i)

+

∑K
k=1(ψ(k)′′

X (0) +QX m
(k)
X (0))

∑K
j=1

[
J̃

(j)
4,Y•

, Ỹ
(k)
•
]
t

−
∑K

k=1 y
(k)
t ψ

(k)
X (−2i)

.(26)

The first term in equation (26) is the same as in equation (24). However, now we have a second

term. Analogously to the argument we used immediately after equation (24), note that under the

“common time-change” assumption (which must automatically hold when K = 1), we can see (by

substituting the value of QX - see remark (2.9)) that the numerator of the second term vanishes

and so our expression for φ̂t in equation (26) is the same as that in equation (24). Note further, that

under the “independent time-change” assumption (and, therefore, also, under the “deterministic

time-change” assumption) the numerator of the second term in equation (26) vanishes even if the

“common time-change” assumption is not in force. Therefore, we see that under the “common

time-change” assumption or under the “independent time-change” assumption, the value of φ̂t

obtained by variant (b) (i.e. by minimising V arQ
t0

[ε(T )]) is the same as the value of φ̂t obtained by

variant (a) (i.e. by minimising V arQ
t0

[εL(T )]).

5.2. Hedging strategy B for the case of minimising V arQ
t0

[ε(T )]. Our aim is to find ΘLFC
t

and ∆t ≡ φt/S(t−) such that we minimise V arQ
t0

[ε(T )]. We differentiate equation (16) with respect

to φt and with respect to ΘLFC
t , set the resulting equations to zero and solve for the optimal values

φ̂t and Θ̂LFC
t . This only involves solving a 2X2 linear system but since the resulting equations

are quite long, we do not write down the solution in its most explicit form. However, even casual

inspection of equation (16) tells us that the resulting solution will be in terms of y(k)
t ,

[
Ỹ

(k)
• , Ỹ

(j)
•
]
t

and
[
J̃

(j)
`,Y•

, Ỹ
(k)
•
]
t
, for ` = 1, 2, 3, 4 and for all k, j = 1, 2, . . . ,K. Two important comments follow:

Firstly, to the extent that
[
Ỹ

(k)
• , Ỹ

(j)
•
]
t
, and

[
J̃

(j)
`,Y•

, Ỹ
(k)
•
]
t

do not have explicit forms for completely

general stochastic time-change processes, the resulting solution will not be useful. Secondly, and

more importantly, even in the special cases that K = 1 and the “independent time-change”

assumption is in force, the value of Θ̂LFC
t is not constant (because the resulting solution depends

upon both y
(1)
t and

[
Ỹ

(1)
• , Ỹ

(1)
•
]
t
). Therefore, for variant (b) (i.e. when the aim is to minimise

V arQ
t0

[ε(T )]), hedging strategy B would not reduce to a static buy-and-hold strategy (except when

the “deterministic time-change” assumption is in force - in which case variant (b) amounts to the
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same as variant (a)). As already alluded to, this has practical implications since a dynamic position

in LFC may incur significant transactions costs, in practice (see remark (3.1)).

5.3. General remarks on the relative merits of variant (a) (minimising V arQ
t0

[εL(T )])

and variant (b) (minimising V arQ
t0

[ε(T )]). We know that minimising V arQ
t0

[εL(T )] is the same

as minimising V arQ
t0

[ε(T )] under the “deterministic time-change” assumption.

We saw in section (4) that, for hedging strategy A under the “common time-change” assumption,

that when we minimise V arQ
t0

[εL(T )], it turns out that V arQ
t0

[εC(T )] = CovarQ
t0

[εC(T ), εL(T )] = 0

and, hence, V arQ
t0

[ε(T )] = V arQ
t0

[εL(T )].

Note that the terms
[
J̃

(j)
`,Y•

, Ỹ
(k)
•
]
t
, for ` = 1, 2, 3, 4, will vanish under the “independent time-

change” assumption. Furthermore, the terms
[
Ỹ

(k)
• , Ỹ

(j)
•
]
t
, for all k, j = 1, 2, . . . ,K, and the

terms
[
J̃

(j)
`,Y•

, Ỹ
(k)
•
]
t
, for ` = 1, 2, 3, 4, vanish under the “deterministic time-change” assumption.

These terms will also always vanish at time t0. This, perhaps, provides some intuition that the

additional terms in equation (26) compared to equation (24) and more generally the additional

terms appearing when one seeks to minimise V arQ
t0

[ε(T )] compared to when one seeks to minimise

V arQ
t0

[εL(T )] may, in practice, typically be quite small - particularly for short-dated instruments

(say, less than one year which is usually the case in practice for variance swaps).

This leads us to the following conjecture:

Conjecture 5.1. In practice, with data typical for equity options markets, if we select the values

of φt (and when appropriate ΘLFC
t and ΘSKS

t ) based on seeking to minimise V arQ
t0

[εL(T )] (rather

than V arQ
t0

[ε(T )]), we will obtain values of φ̂t (and when appropriate Θ̂LFC
t and Θ̂SKS

t ) which are

very close to those we would have obtained if we had sought to minimise V arQ
t0

[ε(T )]. Furthermore,

the residual values of V arQ
t0

[εC(T )] and of CovarQ
t0

[εC(T ), εL(T )] will be very small and hence the

residual values of V arQ
t0

[ε(T )] will be very close to the minimum values of V arQ
t0

[εL(T )].

Of course, by seeking to minimise V arQ
t0

[εL(T )], rather than V arQ
t0

[ε(T )], we give up the potential

for some further optimisation. However, the practical benefits are that minimising V arQ
t0

[εL(T )]:

• 1. Is much simpler and is potentially much more robust to model mis-specification.

• 2. Leads to static buy-and-hold positions in LFC (and when appropriate SKS) under the

“common time-change” assumption which gives practical robustness to the possible presence (see

remark (3.1)) of transactions costs.

We will put conjecture (5.1) to the test in the next section where we will provide numerical results

for hedging variance swaps under realistic market dynamics where the hedges are determined

by seeking to minimise V arQ
t0

[εL(T )]. We will demonstrate that the resulting residual values of

V arQ
t0

[εC(T )] and of CovarQ
t0

[εC(T ), εL(T )] are, in practice, very small (they are equal to zero, as

already noted, for hedging strategy A under the “common time-change” assumption) and that

the residual values of V arQ
t0

[ε(T )] will be very close to the minimum values of V arQ
t0

[εL(T )] and,

hence, that, in practice, selecting the values of φt (and when appropriate ΘLFC
t and ΘSKS

t ) based



OPTIMAL HEDGING OF VARIANCE DERIVATIVES 21

on seeking to minimise V arQ
t0

[εL(T )] (rather than V arQ
t0

[ε(T )]) essentially works just as well whilst

providing simplifications that are of practical benefit.

6. Numerical results

We now present some numerical results which illustrate our analysis in sections (3), (4) and (5).

Throughout this section, we assume a “common time-change” and use the solutions of equa-

tion (23) (i.e. variant (a)) to minimise V arQ
t0

[εL(T )] (but we always report the residual value of

V arQ
t0

[ε(T )] since it is this that is a measure of the total residual hedging error). With a “common

time-change”, we will always have constant values of φ̂t and (when appropriate) Θ̂LFC
t and Θ̂SKS

t .

A benefit of this is that we will always be able to compute V arQ
t0

[ε(T )] analytically using equations

(16) and (17).

We consider a continuously monitored variance swap with maturity T = 0.5. Furthermore,

in order to focus on the essentials, we assume zero interest-rates and zero dividend yield on the

underlying stock.

This section is divided into five sub-sections. In the first sub-section, we assume a “deterministic

time-change”. In the second, we generalise by allowing for stochastic time-changes (and for non-

zero covariances between the underlying returns processes X(k)
t and the stochastic time-changes

Y
(k)
t ). In the third, we also have stochastic time-changes and we use parameters obtained for

time-changed CGMY processes from market data that have appeared in the extant literature. The

fourth considers some robustness tests that we performed while the fifth summarises the first four.

6.1. Numerical results with a “deterministic time-change”. We assume both a “common

time-change” and a “deterministic time-change” and scale the time-change so that EQ
t0

[YT −Yt0 ] =

YT − Yt0 = T = 0.5.

We consider three different groupings of underlying processes for the stock with the results being

reported in tables 1, 2 and 3 respectively.

For each grouping, we consider six different combinations of parameters and five different hedging

strategies. The first hedging strategy (which is just for comparison purposes) uses the 2 + 2 log-

contract replication approach. The second hedging strategy (which is also just for comparison

purposes) uses the approach of Schoutens (2005) and sets φt = 2, ΘLFC
t = 2, ΘSKS

t = 1/3, for all t.

This approach is labelled 2 + 2 + 1/3 in the tables. The third, fourth and fifth hedging strategies

correspond to hedging strategies A, B and C respectively.

In the first group (in table 1), we consider six combinations of (up to) three compound Poisson

processes with fixed jump sizes and a single Brownian motion. In some cases, we set one or more

of the intensity rates (labelled λ1, λ2, λ3 in table 1) and/or the volatility of the Brownian motion

(labelled “Vol” in table 1) equal to zero and thus effectively removing that process. The parameter

combinations for the first group (labelled “params” 1 to 6 in table 1) were chosen by us. They are
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designed to be very approximately representative of the sorts of values that might be obtained if

we had performed a calibration to the market prices of vanilla options in typical equity markets.

In the second group (in table 2), we consider, for six different combinations of parameters, a

generalised CGMY process (generalised in the sense that we sometimes allow different CUp, CDown

and YUp, YDown parameters - see Carr et al. (2002), (2003)) but with no diffusion component.

We chose the parameters (labelled “params” 7 to 12 in table 2) as follows: Params 7 and 8 are

parameter estimates from calibrations to the market prices of vanilla options on the S & P 500

stock index (for September 2000 and March 2000 respectively) and are quoted from Carr and Lee

(2009). Params 9, 10, 11 and 12 are parameter sets which we made up to illustrate our results.

Params 9 implies negatively skewed stock returns (since M > G). In params 10 we reverse the

“up” and “down” parameters compared to params 9 so stock returns would be (for the puposes

of illustration) positively skewed with these parameters. In params 11 and in params 12, we have

symmetric Lévy measures (since M = G) with the difference being that, with params 12, we

typically have much larger jumps (since the values of M = G are one quarter those in params 12).

In the third group (in table 3), we consider a generalised CGMY process with the same values

of M , G, YUp and YDown as in the second group but now we also have a diffusion component whose

volatility is 0.1 (labelled “Vol” in table 3). The parameters are labelled params 13 to params 18.

For all three groups of parameters, we performed a scaling on CUp and CDown so that the

(annualised) variance swap rate expressed as a volatility is always 0.25. For each set of parameters,

we also give, in the relevant table, the price of (the floating leg of) a continuously monitored

skewness swap and the value of QX .

For all 90 combinations of process type, parameters and hedging strategy we give the variance

V arQ
t0

[ε(T )] (in bold) of the hedging strategy (V arQ
t0

[ε(T )] is computed using equation (17)) (all

values of V arQ
t0

[ε(T )] are multiplied by 1,000,000 in table 1 and by 100 in tables 2 and 3 to improve

readability) as well as the values of φt, ΘLFC
t , ΘSKS

t (with the hat symbol when we optimised over

that portfolio weight). The results are displayed in tables 1, 2 and 3.

We make the following comments about the results:

In every case, hedging strategy C performs the best in the sense that V arQ
t0

[ε(T )] is smallest.

Overall, hedging strategy B clearly performs the next best.

Overall, the standard 2 + 2 log-contract replication approach performs the worst of the five

hedging strategies. The 2 + 2 + 1/3 approach generally performs much better than the standard

2+2 log-contract replication approach. It performs worse in two out of eighteen cases (params 8 and

params 14) (because the hedge of ΘSKS
t = 1/3 is very far from the optimal values of 0.0944068 and

0.0956229). Hedging strategy A always significantly outperforms the standard 2 + 2 log-contract

replication approach although, comparing it with hedging strategy B, it is generally far from

optimal. Of course, hedging strategy B always outperforms both the standard 2 + 2 log-contract

replication approach and hedging strategy A.
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Observing table 1, we see that hedging strategy B gives perfect hedges for params 1 and 2 (in line

with our analysis in special cases B1 and B2) while hedging strategy C also gives perfect hedges for

params 3 and 4 (in line with our analysis in special cases C1 and C2). Clearly, hedging strategies

B and C perform extremely well for params 1 to 6. However, we caution that this is essentially

true almost by design of the parameters used. In the more realistic cases (params 7 to 18) where

there are a continuum of possible jump amplitudes, the relative advantage of hedging strategies B

and C, compared to the standard 2 + 2 log-contract replication approach, is much reduced.

From the tables, one can see that, when QX is very far from two, then the optimal values φ̂t

and Θ̂LFC
t are also very far from two. In particular, when QX is much greater than two (which

implies that stock price returns, under Q, are negatively skewed and that the value of the price of

the floating leg of a skewness swap is large and negative), then the optimal values φ̂t and Θ̂LFC
t

are much greater than two. In fact, in table 2, for params 8, the optimal values φ̂t and Θ̂LFC
t for

hedging strategy B are actually greater than 4 which is to be compared with the values of 2 used

in the standard 2 + 2 log-contract replication approach - in other words, the standard 2 + 2 log-

contract replication approach uses hedges which are more than 100 % different from the optimal

hedges. This is noteworthy as the parameters for this case were based on a calibration to market

prices of vanilla options on the S & P 500 stock index (quoted from Carr and Lee (2009)).

The results for params 11, params 12, params 17 and params 18 show that, if one uses CGMY

data which implies symmetric Lévy measures, then increasing the typical size of the jumps (i.e.

making the parameters M and G smaller) causes the variance V arQ
t0

[ε(T )] of the hedging error to

increase.

The key observation is that it is clear that the standard 2 + 2 log-contract replication approach

is very, very far from optimal in the presence of jumps (especially asymmetric jumps) - and, of

course, in practice, equity markets exhibit (asymmetric) jumps.

6.2. Numerical results with stochastic time-changes. In this sub-section, we use a stochastic

time-change. Specifically, the activity rate follows a Heston (1993) process of the form:

dyt = κ(η − yt)dt+ λy
1/2
t dzt, yt0 ≡ y0, with y0 > 0,(27)

where zt is a standard Brownian motion and κ > 0, η > 0 and λ ≥ 0 are constants. The process

that we time-change is exactly as in table 3 of the previous sub-section i.e. a generalised CGMY

process with a diffusion component and with the same parameter values as before. We allow the

Brownian motion zt driving the activity rate yt to have correlation ρ with the diffusion component

of the generalised CGMY process. We consider three different values of ρ, namely ρ = −0.99,

ρ = 0 and ρ = 0.99. We chose these three values simply for illustration as they will give us an

opportunity to see how sensitive our analysis is to non-zero covariance between the underlying

returns process (i.e. the X(k)
t ) and the stochastic time-change process (i.e. Yt) over a range which

is close to the maximum possible range of ρ from -1 to 1. We now discuss the choices of κ and λ
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that we will use in the numerical examples in this sub-section. Our choices are based on table 7.3 of

Schoutens (2003) and on table 9.3 on page 374 of Carr et al. (2003) where calibrations to market

prices of vanilla options on the S & P 500 stock index were performed on different dates for a

CGMY process time-changed by a Heston (1993) activity rate. Our aim is to try to lend weight to

conjecture (5.1) in section (5). Using standard results for Heston (1993) activity rate dynamics, it

is straighforward to see that V arQ
t0

[εC(T )] and CovarQ
t0

[εC(T ), εL(T )] will be proportional to λ2/κ3

and to λ/κ2 respectively. To be as conservative as possible in testing conjecture (5.1), we should

find values of λ2/κ3 and/or λ/κ2 that are as large as possible. Therefore, we chose λ = 1.3612 and

κ = 0.3881 (see the first row of table 7.3 of Schoutens (2003)) because out of all the calibrations

referred to above in Schoutens (2003) and Carr et al. (2003), these choices gave by far the largest

value of λ2/κ3 (and, as it happens, also the largest value of λ/κ2).

We set y0 = 1 and η = 1. We chose the values of φt (and when appropriate ΘLFC
t and ΘSKS

t )

based on our analysis in section (4) (variant (a)) where we sought to minimise V arQ
t0

[εL(T )].

Note that all results are values of V arQ
t0

[ε(T )] (and not of V arQ
t0

[εL(T )]) and are reported in table

4. We have not included the values of φt, ΘLFC
t , etc, in table 4 since they are, of course, the same as

in table 3. Note also that the price of the floating leg of a continuously monitored skewness swap,

the value of QX and the (annualised) variance swap rate expressed as a volatility are unchanged

compared to their values in table 3 because these quantities only depend on EQ
t0

[YT −Yt0 ] = T = 0.5

and not on the values of ρ or λ.

For convenience, we also repeat, in table 4, the results of table 3 where we used a “deterministic

time-change”. These latter results are labelled “λ = 0”. In table 4, we list the values of V arQ
t0

[ε(T )]

for the four parameters combinations (λ = 0, {λ = 1.3612, ρ = 0}, {λ = 1.3612, ρ = −0.99} and

{λ = 1.3612, ρ = 0.99}) for the same six different combinations of generalised CGMY parameters

as in table 3 and for each of the same five hedging strategies.

Note that, as already discussed in section (4), for hedging strategy A, there are no differences

in the values of V arQ
t0

[ε(T )] compared to those in table 3 (because we have a “common time-

change” and hence V arQ
t0

[εC(T )] = 0 and CovarQ
t0

[εC(T ), εL(T )] = 0). There are also no differences

in the values of V arQ
t0

[ε(T )] for the cases {λ = 1.3612, ρ = 0}, {λ = 1.3612, ρ = −0.99} and

{λ = 1.3612, ρ = 0.99}, for the standard 2+2 log-contract replication approach and the 2+2+1/3

approach. There are differences in the values of V arQ
t0

[ε(T )] for hedging strategies B and C but

they are very, very small.

As in the previous sub-section, hedging strategies A, B and C perform much better than the

standard 2+2 log-contract replication approach. In fact, the relative orderings of the performances

of the five different hedging strategies are scarcely changed compared to those for the case of a

“deterministic time-change” in table 3. In particular, hedging strategy C clearly outperforms

hedging strategy B which, in turn, clearly outperforms hedging strategy A which, in turn, clearly

outperforms the standard 2 + 2 log-contract replication approach.



OPTIMAL HEDGING OF VARIANCE DERIVATIVES 25

This lends considerable weight in support of conjecture (5.1) in section (5), namely, that if

we select the values of φt (and when appropriate ΘLFC
t and ΘSKS

t ) based on seeking to minimise

V arQ
t0

[εL(T )] (rather than V arQ
t0

[ε(T )]), the residual values of V arQ
t0

[ε(T )] will be very close to the

minimum values of V arQ
t0

[εL(T )]. Now, of course, different empirical data could lead to a different

conclusion. The aim of this sub-section is most certainly not to perform an exhaustive empirical

study - our results are simply designed to be illustrative. However, we repeat that our values of λ

and κ were chosen to be as conservative as possible out of those listed in Carr et al. (2003) and in

Schoutens (2003).

6.3. More numerical results with stochastic time-changes based on Schoutens (2003)

and Carr et al. (2003). In this sub-section, we give more numerical results with stochastic

time-changes. As we have already indicated, we are not aiming to perform an exhaustive empirical

study and, of course, any study runs the risk of “data-mining”. Therefore, in this sub-section,

we take parameter values (obtained from calibrations to market prices of vanilla options on the

S & P 500 stock index) for time-changed CGMY processes (with no diffusion component) directly,

and without modification, out of table 7.3 of Schoutens (2003) and out of table 9.3 of Carr et

al. (2003). The first five sets of parameters, labelled params 19 to params 23, use activity rates

which follow a Heston (1993) process. The sixth set of parameters, params 24, uses an activity

rate which follows a Gamma-OU process (see Barndorff-Nielsen and Shephard (2001)) of the form:

dyt = −λytdt+dZλt, yt0 ≡ y0, with y0 > 0, where Zt is a compound Poisson process with intensity

rate a, a > 0, and with exponentially distributed jumps with mean 1/b, b > 0, and where λ > 0

is a constant. Finally, we use a seventh set of parameters, params 25, obtained by calibrating a

CGMY process, time-changed using a Heston (1993) activity rate, to the market prices of options

on the Nikkei-225 stock index as used in Crosby and Davis (2010) and as mentioned in section (1).

The parameter values are listed in table 5 as are the values of V arQ
t0

[ε(T )]. The column labelled

“Var swap rate (as vol)” gives the (annualised) variance swap rate expressed as a volatility.

In broad terms, the results give further support to the conclusions of the previous two sub-

sections. In particular, hedging strategy C clearly outperforms hedging strategy B which, in turn,

clearly outperforms hedging strategy A which, in turn, clearly outperforms the standard 2 + 2

log-contract replication approach.

We saw in sub-section (4.1) that, under the “common time-change” assumption, with hedging

strategy A, because ΘLFC
t = QX , we have V arQ

t0
[εC(T )] = CovarQ

t0
[εC(T ), εL(T )] = 0 and hence

V arQ
t0

[ε(T )] = V arQ
t0

[εL(T )]. On the other hand, hedging strategy A gives up the possibility of

further optimisation by fixing ΘLFC
t = QX . Hedging strategy B does not result in V arQ

t0
[εC(T )] =

CovarQ
t0

[εC(T ), εL(T )] = 0 (except under the “deterministic time-change” assumption) but further

optimises over the choice of ΘLFC
t . We can see from table 5 that it is the latter which seems to be

more important than the former because hedging strategy B results in values of V arQ
t0

[ε(T )] which

are approximately one-third to one-half of those resulting from hedging strategy A.



26 JOHN CROSBY

The first parameter set, params 19, implies a particularly highly negatively skewed risk-neutral

distribution (QX is much larger than two and the price of the floating leg of a skewness swap is

large and negative). It results in optimal values of φ̂t (= 10.8956531) and Θ̂LFC
t (= 9.9700106)

for hedging strategy B which are approximately five times larger than the corresponding values

implicit within the standard 2 + 2 log-contract replication approach. The 2 + 2 + 1/3 approach

works particularly badly (and, in fact, much worse than the standard 2 + 2 log-contract replication

approach) with this parameter set - essentially because the the hedge of ΘSKS
t = 1/3 is very far

from the optimal value of 0.0224811. The 2 + 2 + 1/3 approach also performs worse than the

standard 2 + 2 log-contract replication approach for params 20 and params 21 - for essentially the

same reason. This certainly cautions against the naive use of ΘSKS
t = 1/3. By contrast, hedging

strategy C, which optimises over the choice of ΘSKS
t (and of ΘLFC

t and φt), always outperforms all

the other hedging strategies.

Table 5 shows that the optimal values of φ̂t (and when appropriate Θ̂LFC
t and Θ̂SKS

t ) are highly

dependent upon the skewness (under Q) of the Lévy process (as measured by the value of QX).

However, even for params 24, where the Lévy process is least negatively skewed (because it has the

value of QX closest to two), for hedging strategy B, the optimal values of φ̂t and Θ̂LFC
t are more

than 23 % larger than the corresponding values implicit within the standard 2 + 2 log-contract

replication approach. This is quite a large difference - especially when one considers that variance

swaps are usually considered to be simple “flow” derivatives rather than highly exotic derivatives.

6.4. Robustness tests. In this sub-section, we give the results of some robustness tests that we

have performed. In practice, delta-hedges are discretely rebalanced and the payoffs of variance

swaps are based on discretely monitored (usually daily) stock prices. We have thus far used

“minimising variance under Q” as our “criterion of optimality” but another possible criterion is

“pricing and hedging to acceptability”. We now consider how robust our results are to both

these issues. We simulated, using Monte Carlo simulation, the stock price on a discrete time grid

0 ≡ t0 < t1 < . . . < tj−1 < tj < . . . < tN ≡ T . For constants φD and ΘLFC
D (“D” is for discrete),

we compute:

P&L ≡
( N∑
j=1

(log(S(tj)/S(tj−1)))2
)

+ ΘLFC
D log

(
S(T )/

(
S(t0) exp(

∫ T

t0

(r(s)− q(s))ds)
))

− φD

( N∑
j=1

(S(tj)− S(tj−1))
S(tj−1)

)
.(28)

We then solve for optimal values φ̂DMV and Θ̂LFC
DMV (“MV” is for minimising variance) of φD and

ΘLFC
D which minimise V arQ

t0
[P&L].

Equation (28) is a discrete-time analogue to equations (11), (12) and (13) (with ΘVS
t ≡ 1 and

ΘSKS
t ≡ 0 - for brevity, we did not consider skewness swaps in this exercise). In principle, we could

also have allowed for φD and φ̂DMV to be different at each time point tj−1 for j = 1, 2, . . . , N but
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again, for brevity, we did not consider this and assuming a constant value φ̂DMV seems, roughly

speaking, more in line with our previous numerical examples.

With the same Monte Carlo paths, we also used the “pricing and hedging to acceptability”

methodology of Cherny and Madan (2010). This methodology computes a lower price and an

upper price which, for brevity, we will term the “bid price” and the “offer price” (and labelled

as such in table 6 - see from the fourth to the tenth rows), by evaluating expected discounted

payoffs via a concave distortion function. We used the distortion function termed MINMAXVAR

by Cherny and Madan (2010) (see their equation (21)), of the form: Ψλ(u) = 1− (1− u
1

1+λ )(1+λ).

We considered three different values of λ, namely λ = 0.25, λ = 0.5 and λ = 0.75 - the second

and third being suggested by Cherny and Madan (2010) as appropriate for options written on the

S & P 500 stock index while the first provides a contrast. This methodology also computes optimal

hedges for each of the bid and offer prices (for brevity, we must refer the reader to Cherny and

Madan (2010) for all details). The optimal hedges are assumed to be constants and of an analogous

form to those in equation (28). In the obvious fashion, these are labelled φ̂A and Θ̂LFC
A (“A” is for

acceptability”) for bid and offer prices and for the three different values of λ in table 6.

We considered discretely monitored variance swaps with maturity T = 0.5 (as in all our previous

numerical examples) and with N = 126 (in equation (28)) which corresponds approximately to

daily monitoring. The results, using 150, 000 Monte Carlo simulations, are reported in table 6.

Our Monte Carlo simulation is only able to simulate a CGMY process (Carr et al. (2003)) when

the YUp and YDown parameters are both strictly less than one (the finite variation case). Therefore,

we report our results for the sets of parameters, from our previous numerical examples, for which

this is the case - namely params 9, 10, 11, 12 and 25. Recall that params 25 also allows for a

stochastic time-change (with the activity rate following a Heston (1993) process) of the CGMY

process.

We report the Monte Carlo prices of the variance swap and the standard error of the price

estimate in the second and third rows. Crosby and Davis (2010) show, with a similar data set,

that the prices of variance swaps with daily monitoring should be close to those of continuously

monitored variance swaps (reported in the first row and computed via equation (9)) and our

numerical results support this. We see that the optimal hedges φ̂DMV and Θ̂LFC
DMV in the discretely

monitored case (in the twelth and thirteenth rows) are also close to the values of φ̂t and Θ̂LFC
t (in

the tenth and eleventh rows) for hedging strategy B and variant (a) (previously reported in tables

2 and 5).

We also compute, using our Monte Carlo simulation, and report in table 6 (see from the 26th

to the 30th rows), the 99th percentile Value-at-Risk (VAR) for a hedged long position in one

variance swap for the cases when {φD = 2,ΘLFC
D = 2} (corresponding to a discretely monitored,

discretely hedged version of the “standard 2 + 2 log-contract replication” approach), when {φD =

φ̂DMV,ΘLFC
D = Θ̂LFC

DMV} and then for the cases when the positions {φD,ΘLFC
D } are those computed
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using the “pricing and hedging to acceptability” approach for the three different values of λ. We

can see that in nearly all cases, the VAR is significantly reduced for all the other hedged positions

compared to the case when {φD = 2,ΘLFC
D = 2}.

From table 6, we see that, whilst the optimal hedges do, obviously, depend upon the “criterion

of optimality” chosen, the optimal hedges obtained from the “pricing and hedging to acceptability”

approach (see from the 14th to the 25th rows), broadly speaking, support the the conclusions of the

previous sub-sections. In particular when QX is much greater than two, then the optimal values

φ̂DMV, Θ̂LFC
DMV, φ̂A, Θ̂LFC

A are much greater than two. This in turn gives us grounds to believe that

our conclusions are reasonably robust to both (a) discrete hedging / discrete monitoring and (b)

the chosen “criterion of optimality”.

6.5. Summary of numerical results. The results of the previous three sub-sections certainly

give considerable weight to support conjecture (5.1) in section (5). Therefore, if the aim is to give

practical recommendations to traders of variance derivatives as to the most appropriate way of

hedging, we recommend using variant (a) (i.e. the hedges obtained by minimising V arQ
t0

[εL(T )] as

described in section (4)). The resulting hedges are, in practice, likely to be very close (and indeed

identical in some special cases of interest as we have already discussed in detail) to those that would

be obtained using variant (b) (i.e. the hedges obtained by minimising V arQ
t0

[ε(T )]). Moreover,

variant (a) generates simpler equations and under the “common time-change” assumption the

resulting hedges have greater robustness (see remark (3.1)) to the possible presence, in practice, of

transactions costs (because the hedges imply a static buy-and-hold position in log-forward-contracts

and in skewness swaps) and greater robustness to model mis-specification (because the hedges do

not depend upon the time-change process in any way). Our hedges are, of course, highly dependent

upon the parameters of the Lévy processes - especially the skewness. Carr and Lee (2009) show (see

also remark (2.9)) that, under the “common time-change” assumption, the price of a variance swap

divided by the price of a log-forward-contract does not depend upon the time-change process in any

way but is highly dependent upon the parameters of the Lévy processes - especially the skewness.

Of course, vanilla options, to the market prices of which these time-changed Lévy process models

are calibrated, are sensitive to both the skewness of the Lévy process(es) and to the covariance

between the Lévy process(es) and the time-change. This dual-dependence makes it a challenge to

distinguish how much of the skewness seen in implied volatility surfaces should be explained by the

skewness of the Lévy process(es) (which severely impacts the pricing and hedging of variance swaps)

and how much should be explained by a non-zero covariance between the Lévy process(es) and the

time-change (which has little or no impact on the pricing and hedging of variance swaps, under

already stated assumptions). Despite substantial research in this area (Carr et al. (2003), Duffie et

al. (2000), Barndorff-Nielsen and Shephard (2001)), there is still no clear answer but our results, as

well as those of Carr and Lee (2009), certainly motivate additional empirical research in the future.

In the absence of additional empirical research, we have used data obtained from widely-referenced
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sources (Schoutens (2003) and Carr et al. (2003)) that is perceived to be “typical” for the S & P

500 stock index. With this data, the optimal (or nearly optimal) hedges that we have derived are

so far from those implicit within the standard 2 + 2 log-contract replication approach that we feel

that our results should have practical implications for traders of variance swaps.

Both of the “criterion of optimality” that we have used, model the dynamics under the risk-

neutral measure Q. Empirical research (see Broadie et al. (2007) and the references therein)

suggests that, for equity index options, jumps are larger in magnitude (i.e. more negative) and/or

more frequent under the risk-neutral measure Q than under the real-world measure P. Hence, if

the chosen “criterion of optimality” involved an objective function computed under the real-world

measure P - such as, for example, the “No Good Deals” approach of Cochrane and Saa-Requejo

(2000) - our conclusions may be significantly revised. This suggests an interesting topic for further

research. We thank an anonymous referee for making this observation.

7. Conclusions

We have examined the optimal hedging of variance swaps and, en route, also considered skewness

swaps. We have shown that, in the presence of jumps in the underlying stock (which, in practice,

is pertinent to all equity markets), the standard log-contract replication approach of Neuberger

(1990) and Dupire (1993) provides relatively poor hedges and, in cases of practical interest with

parameters obtained from calibrations to the market prices of vanilla options on the S & P 500

stock index, may imply hedges which are significantly different from the optimal (or nearly optimal)

hedging strategies we have developed. We have derived formulae which give optimal (or nearly

optimal) hedges under very general dynamics which allow for multiple jump processes and stochastic

volatility. Throughout our analysis, we have sought to emphasize practical issues. The essence of

our methodology has a degree of robustness to model mis-specification and to the possible presence,

in practice, of transactions costs. We have also demonstrated, by numerical examples, that it also

has a degree of robustness to both (a) discrete hedging / discrete monitoring and (b) the chosen

“criterion of optimality”.
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Table 1. Skewness

λ1 a1 λ2 a2 λ3 a3 Vol swap price QX

params 1 1.00000000 -0.2 0 0 0 0 0.15 -0.00400 2.0846708

params 2 1.53186275 -0.2 0.76593137 0.04 0 0 0 -0.00610 2.1320914

params 3 0.98039216 -0.2 0.49019608 0.04 0 0 0.15 -0.00391 2.0825752

params 4 1.50240385 -0.2 0.75120192 0.04 0.75120192 -0.04 0 -0.00601 2.1299626

params 5 0.96153846 -0.2 0.48076923 0.04 0.48076923 -0.04 0.15 -0.00385 2.0812748

params 6 0.54086538 -0.2 0.27043269 0.04 0.27043269 -0.04 0.2 -0.00216 2.0449185

For all parameters, the (annualised) variance swap rate expressed as a volatility is 0.25. For all hedging

strategies, ΘVS
t = 1. All values of V arQ

t0 [ε(T )] in the table below are multiplied by 1,000,000 to

improve readability. T = 0.5.

params 1 params 2 params 3 params 4 params 5 params 6

2 + 2

φt 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2

ΘSKS
t 0 0 0 0 0 0

V arQ
t0 [ε(T )] 3.2219755 4.9358021 3.1589133 4.8410503 3.0982722 1.7427781

2 + 2 + 1/3

φt 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2

ΘSKS
t 1/3 1/3 1/3 1/3 1/3 1/3

V arQ
t0 [ε(T )] 0.0082141 0.0125829 0.0080531 0.0123410 0.0078982 0.0044428

Hedge strategy A

φ̂t 2.0815517 2.1316674 2.0793692 2.1293857 2.0780750 2.0420725

ΘLFC
t 2.0846708 2.1320914 2.0825752 2.1299626 2.0812748 2.0449185

ΘSKS
t 0 0 0 0 0 0

V arQ
t0 [ε(T )] 0.1843912 0.0048679 0.1987352 0.0080840 0.2139058 0.5419420

Hedge strategy B

φ̂t 2.1355255 2.1066839 2.1339678 2.1236177 2.1344956 2.1350182

Θ̂LFC
t 2.1355255 2.1093850 2.1341001 2.1247118 2.1345689 2.1350425

ΘSKS
t 0 0 0 0 0 0

V arQ
t0 [ε(T )] 0.0 0.0 0.0040225 0.0077286 0.0058494 0.0033147

Hedge strategy C

φ̂t 2.1355255 2.1066839 1.9987087 1.9997334 1.9995097 1.9995006

Θ̂LFC
t 2.1355255 2.1093850 1.9987087 1.9997590 1.9995111 1.9995011

Θ̂SKS
t 0.0 0.0 0.3203351 0.3172952 0.3184241 0.3184699

V arQ
t0 [ε(T )] 0.0 0.0 0.0 0.0 0.0000004 0.0000002
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Table 2. Skewness

CUp CDown G M YUp YDown Vol swap price QX

params 7 0.60283195 0.04075144 1.64 16.9 -2.9 1.54 0 -0.00876 2.1675629

params 8 0.10998598 0.03170896 0.697 22 -3.65 1.45 0 -0.02466 2.4271496

params 9 0.08888068 0.60125165 3.34 14.64 0.165 0.165 0 -0.01696 2.3517572

params 10 0.60125165 0.08888068 14.64 3.34 0.165 0.165 0 0.01696 1.6245175

params 11 10.8377161 10.8377161 22.56 22.56 0.14 0.14 0 0 1.9982574

params 12 0.82244372 0.82244372 5.64 5.64 0.14 0.14 0 0 1.9719659

For all parameters, the (annualised) variance swap rate expressed as a volatility is 0.25. For all hedging

strategies, ΘVS
t = 1. All values of V arQ

t0 [ε(T )] in the table below are multiplied by 100 to improve

readability. T = 0.5.

params 7 params 8 params 9 params 10 params 11 params 12

2 + 2

φt 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2

ΘSKS
t 0 0 0 0 0 0

V arQ
t0 [ε(T )] 0.1003116 1.7636830 0.1296205 0.8684322 0.0001355 0.0422403

2 + 2 + 1/3

φt 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2

ΘSKS
t 1/3 1/3 1/3 1/3 1/3 1/3

V arQ
t0 [ε(T )] 0.0493292 4.5939681 0.0275941 0.2144251 0.0000007 0.0034313

Strategy A

φ̂t 2.1395386 2.3243141 2.3158950 1.5145212 1.9947582 1.9120745

ΘLFC
t 2.1675629 2.4271496 2.3517572 1.6245175 1.9982574 1.9719659

ΘSKS
t 0 0 0 0 0 0

V arQ
t0 [ε(T )] 0.0747423 1.2868488 0.0540592 0.2835614 0.0000966 0.0280183

Strategy B

φ̂t 3.0508893 4.4583264 3.1344999 0.9105117 1.9879848 1.8068255

Θ̂LFC
t 2.9968102 4.1897424 3.0142373 0.7132527 1.9914543 1.8587165

ΘSKS
t 0 0 0 0 0 0

V arQ
t0 [ε(T )] 0.0286036 0.5441049 0.0187595 0.0614244 0.0000962 0.0262567

Strategy C

φ̂t 2.2981238 2.9930569 2.2546368 1.3987597 1.9938378 1.8962149

Θ̂LFC
t 2.2865967 2.9064230 2.2358833 1.2574362 1.9938275 1.8935415

Θ̂SKS
t 0.1600923 0.0944068 0.1831590 0.2800165 0.3339012 0.3416304

V arQ
t0 [ε(T )] 0.0011205 0.0425269 0.0003991 0.0583729 0.0000004 0.0017009
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Table 3. Skewness

CUp CDown G M YUp YDown Vol swap price QX

params 13 0.50637884 0.03423121 1.64 16.9 -2.9 1.54 0.1 -0.00736 2.1388910

params 14 0.09238822 0.02663552 0.697 22 -3.65 1.45 0.1 -0.02071 2.3469497

params 15 0.07465977 0.50505138 3.34 14.64 0.165 0.165 0.1 -0.01425 2.2873888

params 16 0.50505138 0.07465977 14.64 3.34 0.165 0.165 0.1 0.01425 1.6748270

params 17 9.10368153 9.10368153 22.56 22.56 0.14 0.14 0.1 0 1.9985360

params 18 0.69085272 0.69085272 5.64 5.64 0.14 0.14 0.1 0 1.9763984

For all parameters, the (annualised) variance swap rate expressed as a volatility is 0.25. For all hedging

strategies, ΘVS
t = 1. All values of V arQ

t0 [ε(T )] in the table below are multiplied by 100 to improve

readability. T = 0.5.

params 13 params 14 params 15 params 16 params 17 params 18

2 + 2

φt 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2

ΘSKS
t 0 0 0 0 0 0

V arQ
t0 [ε(T )] 0.0842618 1.4814937 0.1088812 0.7294831 0.0001138 0.0354819

2 + 2 + 1/3

φt 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2

ΘSKS
t 1/3 1/3 1/3 1/3 1/3 1/3

V arQ
t0 [ε(T )] 0.0414365 3.8589332 0.0231790 0.1801171 0.0000006 0.0028823

Strategy A

φ̂t 2.1139029 2.2550110 2.2480887 1.5585123 1.9955928 1.9250328

ΘLFC
t 2.1388910 2.3469497 2.2873888 1.6748270 1.9985360 1.9763984

ΘSKS
t 0 0 0 0 0 0

V arQ
t0 [ε(T )] 0.0658955 1.1445256 0.0524545 0.2667471 0.0000863 0.0251997

Strategy B

φ̂t 3.0017860 4.2801042 2.9618934 0.9700460 1.9876175 1.8019377

Θ̂LFC
t 2.9608813 4.0900095 2.8915453 0.8233291 1.9905313 1.8454083

ΘSKS
t 0 0 0 0 0 0

V arQ
t0 [ε(T )] 0.0251331 0.4825763 0.0199881 0.0660671 0.0000859 0.0231835

Strategy C

φ̂t 2.2820842 2.9182501 2.2055491 1.8132336 1.9938378 1.8962027

Θ̂LFC
t 2.2736164 2.8585924 2.1963724 1.7409378 1.9938297 1.8940907

Θ̂SKS
t 0.1613416 0.0956229 0.1886903 0.5008981 0.3338428 0.3406762

V arQ
t0 [ε(T )] 0.0009900 0.0383068 0.0004213 0.0541418 0.0000003 0.0014316
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Table 4.

For all parameters, the (annualised) variance swap rate expressed as a volatility is 0.25. For all hedging

strategies, ΘVS
t = 1. All values in the table below are values of V arQ

t0 [ε(T )] and are multiplied by

100 to improve readability. T = 0.5.
params 13 params 14 params 15 params 16 params 17 params 18

2 + 2

λ = 0 0.0842618 1.4814937 0.1088812 0.7294831 0.0001138 0.0354819

ρ = 0 0.0843720 1.4820649 0.1092938 0.7304684 0.0001138 0.0354856

ρ = −0.99 0.0843720 1.4820649 0.1092938 0.7304684 0.0001138 0.0354856

ρ = 0.99 0.0843720 1.4820649 0.1092938 0.7304684 0.0001138 0.0354856

2 + 2 + 1/3

λ = 0 0.0414365 3.8589332 0.0231790 0.1801171 0.0000006 0.0028823

ρ = 0 0.0414414 3.8590729 0.0231972 0.1801635 0.0000006 0.0028860

ρ = −0.99 0.0414414 3.8590729 0.0231972 0.1801635 0.0000006 0.0028860

ρ = 0.99 0.0414414 3.8590729 0.0231972 0.1801635 0.0000006 0.0028860

Strategy A

λ = 0 0.0658955 1.1445256 0.0524545 0.2667471 0.0000863 0.0251997

ρ = 0 0.0658955 1.1445256 0.0524545 0.2667471 0.0000863 0.0251997

ρ = −0.99 0.0658955 1.1445256 0.0524545 0.2667471 0.0000863 0.0251997

ρ = 0.99 0.0658955 1.1445256 0.0524545 0.2667471 0.0000863 0.0251997

Strategy B

λ = 0 0.0251331 0.4825763 0.0199881 0.0660671 0.0000859 0.0231835

ρ = 0 0.0289937 0.4969947 0.0218116 0.0728237 0.0000863 0.0232983

ρ = −0.99 0.0276263 0.4847143 0.0201954 0.0793120 0.0000853 0.0230477

ρ = 0.99 0.0303611 0.5092751 0.0234278 0.0663355 0.0000873 0.0235489

Strategy C

λ = 0 0.0009900 0.0383068 0.0004213 0.0541418 0.0000003 0.0014316

ρ = 0 0.0012566 0.0403764 0.0004772 0.0550748 0.0000004 0.0014769

ρ = −0.99 0.0011822 0.0389163 0.0004403 0.0562629 0.0000004 0.0014846

ρ = 0.99 0.0013310 0.0418366 0.0005142 0.0538867 0.0000004 0.0014693

Table 5. Skewness

CUp CDown G M YUp YDown Vol swap price QX

params 19 0.00740000 0.00740000 0.1025 11.394 1.6765 1.6765 0 -0.06977 2.7294158

params 20 0.16350000 0.04713705 0.6965 21.97 -3.65 1.45 0 -0.01272 2.4274086

params 21 0.35870000 0.01886762 0.4231 24.64 -4.51 1.67 0 -0.01419 2.3727413

params 22 0.40410000 0.02731716 1.64 16.91 -2.9 1.54 0 -0.00385 2.1675632

params 23 2.04400000 0.17476200 3.68 52.86 -2.12 1.22 0 -0.01054 2.1349535

params 24 0.04150000 0.04150000 3.9134 30.6322 1.3664 1.3664 0 -0.00182 2.0769284

params 25 1.69755908 1.69755908 6.647 78.61 0.2064 0.2064 0 -0.00772 2.1748812
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Table 5 continued.
Var swap rate (as vol) λ κ η y0 ρ Var swap price

params 19 0.232270 1.3612 0.3881 1.4012 1 0 0.0269747

params 20 0.179512 0.00022 8.51 0.1497 1 0 0.0161122

params 21 0.190740 0.0006 6.65 0.3469 1 0 0.0181909

params 22 0.165670 2.78E-05 4.85 0.4474 1 0 0.0137233

params 23 0.315297 1.7 15.91 1.3700 1 0 0.0497062

params 24 0.172255 0.8826 a = 0.5945 b = 0.8524 1 0 0.0148359

params 25 0.240812 1.8105 0.6578 1.5764 1 0 0.0289952

For all hedging strategies, ΘVS
t = 1. All values of V arQ

t0 [ε(T )] in the table below are multiplied by

100 to improve readability. T = 0.5.

params 19 params 20 params 21 params 22 params 23 params 24 params 25

2 + 2

φt 2 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2 2

ΘSKS
t 0 0 0 0 0 0 0

V arQ
t0 [ε(T )] 69.47894 0.9111811 1.9158518 0.0440515 0.0252706 0.0032939 0.0102416

2 + 2 + 1/3

φt 2 2 2 2 2 2 2

ΘLFC
t 2 2 2 2 2 2 2

ΘSKS
t 1/3 1/3 1/3 1/3 1/3 1/3 1/3

V arQ
t0 [ε(T )] 6188.486 2.3766379 11.4521946 0.0216628 0.0030044 0.0003268 0.0005453

Strategy A

φ̂t 2.4383574 2.3244859 2.2640247 2.1395390 2.1218021 2.0679356 2.1641369

ΘLFC
t 2.7294158 2.4274086 2.3727413 2.1675632 2.1349535 2.0769284 2.1748812

ΘSKS
t 0 0 0 0 0 0 0

V arQ
t0 [ε(T )] 62.97082 0.6648498 1.5885852 0.0328228 0.0156676 0.0024078 0.0041346

Strategy B

φ̂t 10.8956531 4.4599057 5.0370276 3.0508929 2.6186136 2.4716678 2.5594479

Θ̂LFC
t 9.9700106 4.1910341 4.7686888 2.9968132 2.5907777 2.4615637 2.5267807

ΘSKS
t 0 0 0 0 0 0 0

V arQ
t0 [ε(T )] 33.61962 0.2811378 0.7166531 0.0125611 0.0056145 0.0010554 0.0021402

Strategy C

φ̂t 7.1416567 2.9939131 3.4025189 2.2981263 2.1161261 2.0762521 2.0831422

Θ̂LFC
t 6.6737900 2.9071631 3.3005068 2.2865989 2.1123662 2.0753046 2.0797957

Θ̂SKS
t 0.0224811 0.0943611 0.0709055 0.1600920 0.2139766 0.2270833 0.2349488

V arQ
t0 [ε(T )] 6.12475 0.0219838 0.0774067 0.0004920 0.0000903 0.0000169 0.0000221
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Table 6.

params 9 params 10 params 11 params 12 params 25

Var swap price (anal) 0.0312500 0.0312500 0.0312500 0.0312500 0.0289952

Var swap price (MC) 0.0314860 0.0309568 0.0312157 0.0310877 0.0291106

Standard error 0.0003252 0.0003072 0.0000477 0.0001872 0.0001590

Bid price λ = 0.25 0.0297194 0.0265521 0.0308601 0.0275996 0.0283367

Offer price λ = 0.25 0.0352066 0.0331717 0.0315674 0.0344164 0.0306272

Bid price λ = 0.5 0.0286490 0.0218774 0.0304760 0.0238521 0.0279574

Offer price λ = 0.5 0.0411256 0.0343744 0.0319382 0.0379767 0.0330430

Bid price λ = 0.75 0.0275657 0.0196013 0.0300212 0.0202451 0.0277353

Offer price λ = 0.75 0.0483797 0.0354357 0.0323684 0.0416845 0.0363403

Analytical

φ̂t 3.1344999 0.9105117 1.9879848 1.8068255 2.5594479

Θ̂LFC
t 3.0142373 0.7132527 1.9914543 1.8587165 2.5267807

Monte Carlo

φ̂DMV 3.2145844 1.0088239 1.9878759 1.8171757 2.5075201

Θ̂LFC
DMV 3.0809348 0.8469218 1.9916039 1.8701114 2.4812933

Hedging to acceptability

Bid φ̂A λ = 0.25 2.4685721 1.1694190 1.9630708 1.7367498 2.2004639

Bid Θ̂LFC
A λ = 0.25 2.4424330 1.0970614 1.9657680 1.7529853 2.1970906

Offer φ̂A λ = 0.25 2.8645302 1.5166750 2.0209049 2.0993438 2.3778078

Offer Θ̂LFC
A λ = 0.25 2.8079582 1.4787809 2.0236749 2.1199459 2.3649492

Bid φ̂A λ = 0.5 2.3578254 0.9129815 1.9353046 1.5291110 2.1576639

Bid Θ̂LFC
A λ = 0.5 2.3421220 0.8303504 1.9378757 1.5404824 2.1559739

Offer φ̂A λ = 0.5 3.2622818 1.5982663 2.0479313 2.2883086 2.5107230

Offer Θ̂LFC
A λ = 0.5 3.1861281 1.5719362 2.0506504 2.3080368 2.4911953

Bid φ̂A λ = 0.75 2.2566088 0.7513199 1.9058135 1.3263418 2.1303199

Bid Θ̂LFC
A λ = 0.75 2.2493061 0.6716910 1.9082153 1.3344387 2.1294833

Offer φ̂A λ = 0.75 3.6641479 1.6679601 2.0758198 2.4878403 2.7057963

Offer Θ̂LFC
A λ = 0.75 3.5759660 1.6507373 2.0784538 2.5059862 2.6789849

99th percentile VAR

VAR {φD = 2,ΘLFC
D = 2} 0.1532198 0.0691230 0.0656900 0.0907471 0.0933229

VAR {φ̂DMV, Θ̂LFC
DMV} 0.0820607 0.1208635 0.0650907 0.0896958 0.0626494

VAR {φ̂A, Θ̂LFC
A }, λ = 0.25 0.0694683 0.0701591 0.0646238 0.0732686 0.0608514

VAR {φ̂A, Θ̂LFC
A }, λ = 0.5 0.0736461 0.0682568 0.0641386 0.0687674 0.0622854

VAR {φ̂A, Θ̂LFC
A }, λ = 0.75 0.0776817 0.0674159 0.0638037 0.0710855 0.0646506
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cation in Finance and Stochastics

Carr P. and L. Wu (2007) “Stochastic skew in currency options” Journal of Financial Economics Vol. 86

p213-247

Cherny A. and D. Madan (2009) “New measures for performance evaluation” Review of Financial Studies

Vol. 22 p2571-2606

Cherny A. and D. Madan (2010) “Markets as a counterparty: An introduction to conic finance” Interna-

tional Journal of Theoretical and Applied Finance” Vol. 13 No. 8 p1149-1177

Cochrane J. and J. Saa-Requejo (2000) “Beyond arbitrage: Good deal asset price bounds in incomplete

markets” Journal of Political Economy Vol. 108 p79-119

Cont R. and P. Tankov (2004) “Financial modelling with jump processes” Chapman & Hall

Crosby J. and M. H. A. Davis (2010) “Variance derivatives: Pricing and convergence” Working paper

Demeterfi K., E. Derman, M. Kamal and J. Zou (1999) “More than you ever wanted to know about

volatility swaps” Journal of Derivatives Vol. 6 No. 4 p9-32 (also a Goldman Sachs Quantitative Strategies

note available on Emanuel Derman’s website at http://www.ederman.com)

Duffie D., J. Pan and K. Singleton (2000) “Transform analysis and asset pricing for affine jump-diffusions”

Econometrica Vol. 68 No. 6 p1343-1376

Dupire B. (1993) “Model art” Risk Vol. 6 No. 9 p118-124

Heston S. (1993) “A closed-form solution for options with stochastic volatility with applications to bond

and currency options” Review of Financial Studies Vol. 6 p327-343

Kou S. (2002) “A jump-diffusion model for option pricing” Management Science Vol. 48 p1086-1101

Madan D. (2010) “Pricing and hedging basket options to prespecified levels of acceptability” Quantitative

Finance Vol. 10 No. 6 p607-615



OPTIMAL HEDGING OF VARIANCE DERIVATIVES 37

Merton R. (1976) “Option pricing when the underlying stock returns are discontinuous” Journal of Fi-

nancial Economics Vol. 3 p115-144

Neuberger A. (1990) “Volatility trading” Working paper, London Business School

Neuberger A. (1994) “The Log Contract: A new instrument to hedge volatility” Journal of Portfolio

Management Winter 1994 p74-80

Neuberger A. (1996) “The Log Contract and Other Power Contracts” in “The Handbook of Exotic

Options” edited by I. Nelken p200-212
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