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Abstract. We examine how to approximate a Lévy process by a hyperexponential jump-diffusion (HEJD)

process, composed of Brownian motion and of an arbitrary number of sums of compound Poisson processes

with double exponentially distributed jumps. This approximation will facilitate the pricing of exotic options

since HEJD processes have a degree of tractability that other Lévy processes do not have. The idea behind

this approximation has been applied to option pricing by [2] and [14]. In this paper we introduce a more

systematic methodology for constructing this approximation which allow us to compute the intensity rates,

the mean jump sizes and the volatility of the approximating HEJD process (almost) analytically. Our

methodology is very easy to implement. We compute vanilla option prices and barrier option prices using

the approximating HEJD process and we compare our results to those obtained from other methodologies

in the literature. We demonstrate that our methodology gives very accurate option prices and that these

prices are more accurate than those obtained from existing methodologies for approximating Lévy processes

by HEJD processes.

1. Introduction

The purpose of this paper is to examine, with a view to option pricing, how a Lévy process can be

approximated by a jump-diffusion process with jumps consisting of sums of compound Poisson processes

with double exponentially distributed jumps. Firstly, we need to introduce some concepts and notation.

We define the initial time (today) by t0 and denote calendar time by t, t ≥ t0. Consider a market, which

we assume to be free of arbitrage, where the risk-free interest rate is r and in which there is an asset, which

pays a dividend yield q, whose price at time t is St.

The absence of arbitrage guarantees the existence of a risk-neutral equivalent martingale measure. How-

ever, as we will utilise Lévy processes, the market is incomplete and, hence, the risk-neutral equivalent

martingale measure is not unique. We will assume that one such measure Q has been fixed on a filtered

probability space (Ω,F , {Ft}t≥t0 ,Q). We denote by E
Q
t [∙] := E

Q[∙|Ft] the conditional expectation, under Q,

at time t. We assume that, under the risk-neutral measure Q, the asset price evolves as:

St = St0exp((r − q)(t− t0) +Xt),(1)

where Xt is a Lévy process, mean-corrected such that E
Q
t0
[exp(Xt)] = 1 for all t ≥ t0, with Xt0 = 0.

Examples of Lévy processes which have been used in finance include Variance Gamma (henceforth

VG) [21], CGMY [10] (also known as the KoBol process, [7] [8]), Normal Inverse Gaussian (henceforth

NIG) [3] and Generalised Hyperbolic [13]. For more details on these processes, see [26] and [11]. All the

aforementioned processes have infinite activity (that is to say there are an infinite number of jumps in a
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finite time interval, see [26] - actually, to be precise, in the CGMY model, the Y parameter must be non-

negative to have infinite activity). We will refer to these aforementioned infinite activity Lévy processes by

the collective noun General Classes of Lévy processes. The motivation for using General Classes of Lévy

processes is two-fold. Firstly, they can capture empirically observed features of time-series data such as

high-frequency jumps and excess kurtosis. Secondly, and much more relevantly for us, they can be fitted

(especially if time-changed) to implied volatility surfaces (see e.g. [10]).

The characteristic function is known (in essentially closed form) for all the Lévy processes mentioned

above. Results from [19], [18] and [27] (see also Section 4), show that given the characteristic function, it is

straightforward to price vanilla (standard European) options very rapidly. However, pricing exotic options is

much more complicated for General Classes of Lévy processes. Whereas analytical solutions exist for many

simple exotic options in the model of [4] and [22], analytical results are rarely available for General Classes

of Lévy processes. This means that pricing exotic options generally requires computationally intensive

methodologies such as Monte Carlo simulation. Various techniques for simulating Lévy processes have been

developed in the literature. However, many of them, broadly-speaking, come down to approximating the

Lévy process by a jump-diffusion process.

There is a class of processes which does allow for analytical results (up to Laplace inversion) for a range

of exotic options. These are jump-diffusion processes which have a Brownian motion component as well as

a jump component formed from sums of compound Poisson processes with double exponentially distributed

jumps (henceforth HEJD for hyperexponential jump-diffusion). Analytical results for various types of barrier

options, for lookback options, for Russian options and first passage time distributions are developed variously

in [16], [17], [28], [20], [2], [14] and [9] under a HEJD process or a special case of it (the double exponential

jump-diffusion in [15]) or a generalisation of it (HEJD where both volatility and jump intensity are stochastic,

see [9] and [23] for more details). Hence, we can see that a HEJD process has, from the point of view of

pricing exotic options, a considerable degree of tractability which General Classes of Lévy processes such as

CGMY and NIG do not have. As an aside, we also mention that Monte Carlo simulation of HEJD processes,

without discretization error, is very straightforward (see, for example,[26]).

Let us assume that the Lévy measure of the process Xt has a Lévy density given by ν : R\{0} → [0,∞)

which is completely monotone (see [24], page 388, for definition and properties). It is easily verified that

HEJD, VG, NIG, Generalised Hyperbolic and CGMY (the latter provided the parameter Y ≥ −1) processes

all satisfy this condition. Then, by Bernstein’s theorem we can express the function ν in the form:

ν(x) = 1(0,∞)(x)

∫ +∞

0

e−uxμ+(du) + 1(−∞,0)(x)

∫ 0

−∞
e−uxμ−(du)(2)

where 1A denotes the indicator function of the set A and where μ+(du), μ−(du) are measures on the

intervals (0,∞), (−∞, 0) respectively. Observing the forms of the integrands and noting that an integral

can be approximated as a discrete sum, equation (2) immediately suggests how to approximate the Lévy

process by a HEJD process (where jumps whose magnitudes are smaller than some certain level being

approximated by Brownian motion). After constructing this approximation, one can then use the analytical

results available to price exotic options. This idea was introduced into the option pricing literature by [2]

and then developed further by [14].

The methodologies employed by [2] and by [14] to approximate the Lévy process in question by a HEJD

process are described in those papers in more depth. However, a brief precis is as follows. They fitted a total

of fourteen compound Poisson processes with exponentially distributed jumps, seven producing up jumps

and seven producing down jumps. They chose (based on intuition) some points x at which to approximate

the Lévy density ν(x). They chose (again, based on intuition) some mean jump sizes for the individual
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exponentially-distributed jumps which constituted the HEJD process. In [2], they did a non-linear least-

squares fit, over the choice of the mean jump sizes and the jump intensity rates, between the Lévy density

ν(x) and the Lévy density of the HEJD process evaluated at the chosen points x. In [14], they kept the

mean jump sizes the same as the initial guesses and only fitted the jump intensity rates in the least-squares

fit. The diffusion component was determined by approximating as Brownian motion all the jumps whose

magnitude were less than the smallest mean jump sizes (for both up and down jumps).

One might describe these fitting procedures as a little ad-hoc. This is not a criticism. Indeed, firstly, the

approximation of the Lévy density was by no means the central point of either of those papers, secondly,

the fitting procedures are intuitive and easy to implement and, thirdly, based on results reported there and

also based on results contained within this paper (see Section 5), the resulting barrier option prices are

reasonably accurate. However, the question might still be asked as to whether there might be an alternative

methodology. By contrast with [2] and [14], approximating Lévy processes by HEJD processes is the central

point of this paper. Our starting point is the desire to find a more systematic methodology of approximating

Lévy processes by HEJD processes which has the following six features:

1. No non-linear least-squares fitting is required.

2. No guessing of the mean jump sizes is required.

3. The methodology is equally as intuitive and easy to implement as the procedures described above.

4. The methodology has a robust way of approximating the very small jumps by Brownian motion.

5. The methodology yields more accurate vanilla option prices than the procedures described above.

6. The methodology yields more accurate barrier option prices than the procedures described above.

Three comments are in order about the last six points. Firstly, our desire to avoid non-linear least-squares

fitting is based on the fact that such methods can be unstable or ill-posed because the algorithm may find a

local minimum rather than the global minimum. Secondly, although we wish to have more accurate vanilla

option prices, this will primarily be in order that we can benchmark the accuracy of our methodology

(since we know we can accurately price vanilla options for both General Classes of Lévy processes and

for the HEJD process). Thirdly, although we will focus mostly on pricing barrier options, we believe our

methodology should also be of interest for pricing other exotic options, either by Laplace transform methods

(for example, for lookback options and Russian options, see [17] and [29]) or by Monte Carlo simulation.

We describe our methodology, which does in fact have our six desirable features, in this paper. The rest

of this paper is structured as follows. In Section 2 we very briefly review the key properties of Lévy processes

that we will use later. In Section 3 we explain our algorithm to calculate the parameters of the approximating

hyperexponential jump-diffusion process. In sections 4 and 5 we present numerical comparisons and results

for vanilla option prices and for barrier option prices. Section 6 is a short conclusion. In the appendices, we

present our results in graphical form.

2. Lévy processes – basic facts

2.1. Key features of Lévy Processes. We consider a Lévy process (Xt)t≥t0 , with Xt0 = 0 a.s. Let

Φt(z) = E
Q
t0
[exp (izXt)] be the characteristic function of Xt, where z ∈ R. The characteristic exponent φ(z),

defined by Φt(z) = exp((t− t0)φ(z)), for each t ≥ t0, satisfies the Lévy-Khintchine formula:

φ(z) = iγz −
1

2
σ2z2 +

∫ +∞

−∞
(exp(izx)− 1− izx1[0,1](|x|))ν(dx),(3)

for some γ ∈ R, σ2 ≥ 0 and a measure ν on R\{0} with
∫ +∞
−∞ (1∧x

2)ν(dx) < ∞. Here, ν is the Lévy measure

of the process Xt. If ν is absolutely continuous with respect to the Lebesgue measure, i.e. ν(dx) = ν(x) dx,

then the function ν : R\{0} → [0,∞) is the Lévy density. See [24], Section 2.8, Theorem 8.1 for more details.



4 JOHN CROSBY, NOLWENN LE SAUX, AND ALEKSANDAR MIJATOVIĆ

Remark 2.1. The term izx1[0,1](|x|) in equation (3) ensures that the integral converges. However, if the

Lévy measure decays fast enough as |x|→ ∞ so that the integral
∫
R\[−1,1] xν(dx) exists (this is the case

for the Lévy processes we will consider here, such as CGMY and NIG, but not the case in general, for the

α-stable process for example), we can replace izx1[0,1](|x|) by izx. If
∫
[−1,1]|x|ν(dx) <∞ (which corresponds

to the process (Xt)t≥t0 with finite variation), then we do not need this term at all. Note that changing the

form of this term is, loosely speaking, the same as changing the drift of (Xt)t≥t0 .

Remark 2.2. Note also that if the Lévy density ν decays at least as fast as the function x 7→ e−A|x|, for some

A > 0, when |x|→ ∞, then we can extend the characteristic exponent φ to the strip {z ∈ C : =(z) ∈ (−A,A)}

in the complex plane. This is clear from formula (3). In the rest of the paper we assume that such an extension

exists for A ≥ 1, which clearly holds for the main models of interest (see Appendix A). The extension of the

characteristic exponent φ will be used in our approximation algorithm (see Subsection 4.1). Note also that

the assumption in this remark is not unreasonable if we are modelling the asset price process by (1) because

it is equivalent to requiring that St and S
−1
t have finite first moments for all t ≥ t0.

We define the mean-corrected characteristic exponent φMC(z), via φMC(z) ≡ φ(z) − izφ(−i). It is

straightforward to see that φMC(z) is the characteristic exponent of a Lévy process Xt which satisfies

EQt0
[
eXt
]
= 1. Since in applications to pricing theory, the drift of the Lévy process is determined by the no

arbitrage condition (see equation (1)), it is sufficient to consider Lévy processes which satisfy EQt0
[
eXt
]
= 1.

Since we shall only consider Lévy processes whose Lévy density decays sufficiently quickly and without a

Gaussian component, we can always write the characteristic exponent in the form:

φ(z) =

∫ +∞

−∞
(eizx − 1− iβzx)ν(x)dx − iαz

∫ +∞

−∞
(ex − 1− βx)ν(x)dx,(4)

where α = 1 gives the mean-corrected characteristic exponent and β = 0 gives a process of finite variation.

Since we would also like the Lévy density ν to take the form of equation (2), we must, by Bernstein’s

theorem, assume that it is completely monotonic. To summarise, from now on we assume the following.

Assumption 2.3. The Lévy density ν : R\{0} → [0,∞) in (3) is completely monotonic, it decays at least

as fast as the function x 7→ e−A|x|, for some A ≥ 1, when |x|→ ∞, and the measures μ± in (2) are absolutely

continuous with respect to the Lebesgue measure.

2.2. The Hyperexponential Jump-Diffusion Process. The hyperexponential jump-diffusion (hence-

forth HEJD) process, with an arbitrary number N (we assume N is even for notational simplicity) of

compound Poisson processes has the form

Xt = σWt +

N/2∑

i=1

Nt,i∑

k=1

J+ik −
N∑

i=N/2+1

Nt,i∑

k=1

J−ik,

whereWt denotes a standard Brownian motion with Wt0 = 0 and where Nt,i, for each i = 1, 2, ..., N , denotes

a Poisson (counting) process with Nt0,i = 0 and random variables J
+
ik, J

−
(i+N/2)k, for i = 1, ..., N/2, k ∈ N,

are independent exponentially distributed. Furthermore, we denote by ai and ci respectively the intensity

rates of the Poisson processes corresponding to up jumps and down jumps, and we denote by bi and di the

reciprocals of the mean jump sizes for the up and down jumps respectively, i.e.

EQt0 [Nt,i] = ai(t− t0), EQ[J+ik] =
1

bi
, for 1 ≤ i ≤ N/2,

EQt0 [Nt,i] = ci(t− t0), EQ[J−ik] =
1

di
, for N/2 + 1 ≤ i ≤ N.
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The characteristic exponent φN (z) of this process has the form (choose α = 1 for the mean-corrected form):

φN (z) = −
1

2
σ2(z2 + iαz) +

N/2∑

i=1

[

aibi

(
1

bi − iz
−
1

bi

)

− iαzaibi

(
1

bi − 1
−
1

bi

)]

+

N∑

i=N/2+1

[

cidi

(
1

di + iz
−
1

di

)

− iαzcidi

(
1

di + 1
−
1

di

)]

.(5)

3. Approximation methodology

3.1. Initial presentation. Our aim in this section is to approximate, in distribution, a given Lévy pro-

cess by a HEJD process. We know that the convergence in distribution follows from the convergence of

corresponding characteristic exponents (or characteristic functions). Hence, we seek to approximate the

characteristic exponent φ of the Lévy process by the characteristic exponent of a HEJD process. In addi-

tion to Assumption 2.3 without loss of generality we can suppose that the Lévy process has no Brownian

component and can hence express φ on the set {z ∈ C : =(z) ∈ (−A,A)} using formula (4).

Given N , we seek to approximate φ by the characteristic exponent φN of a HEJD process (see (5)). In

other words we must choose ai, bi, ci, di and σ
2 so that the approximation by the HEJD process is as

accurate as possible. If we substitute equation (2) into equation (4), change variables u→ −u and x→ −x

in the integrals over (−∞, 0) and switch the order of integration, we get:

φ(z) =

∫ +∞

0

μ+(u)g
+
α,β(u, z) du +

∫ +∞

0

μ−(−u)g
−
α,β(u, z) du, where

g±α,β(u, z) ≡

(
1

u∓ iz
−
1

u
∓
iβz

u2

)

− iαz

(
1

u∓ 1
−
1

u
∓
β

u2

)

and ∓ is the opposite sign of ±. In the mean-corrected case (α = 1) we recognize that the terms g+α,β(u, z)

and g−α,β(u, z) are of the same form as the summands appearing in the characteristic exponent (5), where

the exponentially distributed jumps have mean sizes 1/u and the compound Poisson processes have intensity

rates equal to 1/u.

We define h±α,β(u, z) ≡ −g
±
α,β(u, z)/(z

2 + iαz), introduce θ+, θ− ∈ R+ and express the exponent φ as

φ(z) =

∫ θ+

0

μ+(u)g
+
α,β(u, z) du +

∫ θ−

0

μ−(−u)g
−
α,β(u, z) du

− (z2 + iαz)

(∫ +∞

θ+

μ+(u)h
+
α,β(u, z) du+

∫ +∞

θ−

μ−(−u)h
−
α,β(u, z) du

)

.(6)

The identity in (6) suggests an approximation scheme where the first two integrals are replaced by sums:

φ(z) '
N/2∑

i=1

ω+i μ+(u
+
i )g

+
α,β(u

+
i , z) +

N∑

i=1+N2

ω−i μ−(−u
−
i )g

−
α,β(u

−
i , z)−

1

2
(Σ+ +Σ−)(z2 + iαz).(7)

In (7) ω+i and u
+
i , for i = 1, ..., N/2, are respectively weights and abscissas coming from a N/2-point Gauss-

Legendre quadrature rule (see [1]) on the interval (0, θ+), ω
−
i and u

−
i , for i = 1+N/2, ..., N , are respectively

weights and abscissas coming from a N/2-point Gauss-Legendre quadrature rule on the interval (0, θ−), and:

Σ+ ≡ 2
∫ +∞

θ+

μ+(u)h
+
α,β(u, z)du and Σ− ≡ 2

∫ +∞

θ−

μ−(−u)h
−
α,β(u, z)du.(8)

Observing the form of equation (7) we see that we have written the characteristic exponent of the Lévy

process in a form that resembles the characteristic exponent of a HEJD process. In terms of the parameters
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ai, bi, ci and di, we have:

aibi = ω
+
i μ+(u

+
i ) and bi = u

+
i , 1 ≤ i ≤ N/2

cidi = ω
−
i μ−(−u

−
i ) and di = u

−
i , 1 +N/2 ≤ i ≤ N.(9)

However, there are two sources of error in our proposed approximation.

1. The discretization error : in equation (6), we replace the integrals by finite sums.

2. The truncation error : in the third and fourth terms of equation (6) respectively, we would like the

integrands μ+(u)h
+
α,β(u, z) and μ−(−u)h

−
α,β(u, z) and hence Σ

+ and Σ− to be independent of z. However,

clearly, neither Σ+ nor Σ− is independent of z and this prevents us from identifying the parameter σ2 as

being equal to Σ+ + Σ−. Note that for a Lévy density ν it can be shown easily that μ+(u) and μ−(−u)

must grow slower than a quadratic in u, as u → ∞, and therefore, observing the forms of h+α,β(u, z) and

h−α,β(u, z), we have limθ±→∞Σ
± = 0. Hence the error in the third and fourth terms could be viewed as a

truncation error in the upper limit of the integrals.

Note how these two errors work in opposite directions. Indeed, for a fixed N , if θ+ and θ− increase, we

would intuitively expect that the discretization error gets larger while the truncation error gets smaller. If θ+

and θ− decrease, we would intuitively expect that the discretization error gets smaller while the truncation

error gets larger. We will analyse the discretization error and the truncation error in the next two sections.

3.2. Truncation error. Let us now have a closer look at the term (Σ+ +Σ−) (z2+iαz)/2. We momentarily

view this term as the characteristic exponent of a random variable. We can then calculate the second and

third central moments μ2 and μ3 of this random variable by differentiating its characteristic function twice

and three times at z = 0 respectively. We obtain:

μ2 ≡ 2
∫ +∞

θ+

μ+(u)

u3
du+ 2

∫ +∞

θ−

μ−(−u)
u3

du, μ3 ≡ 6
∫ +∞

θ+

μ+(u)

u4
du− 6

∫ +∞

θ−

μ−(−u)
u4

du.

In practice, the third central moment μ3 should be small in magnitude relative to μ2. In fact, for a

symmetrical Lévy process (i.e. with μ+(u) = μ−(−u) for all u ∈ R+ and if we were to choose θ+ = θ−)

μ3 would be identically equal to zero. In any event, it is certainly true that if θ+ and θ− are large enough,

then |μ3|� μ2. Furthermore, in the mean-corrected case α = 1, a simple calculation shows that the term

(Σ+ +Σ−) (z2 + iαz)/2 behaves asymptotically like

(z2 + iz)

[∫ ∞

θ+

μ+(u)

(
1

u3

)

du+

∫ ∞

θ−

μ−(−u)

(
1

u3

)

du

]

=
1

2
μ2(z

2 + iz)

if θ+ and θ− are both much, much larger than |z|. We recognize the right-hand side as the mean-corrected

characteristic exponent of Brownian motion with variance μ2.

Our approximation, therefore, is to replace the term (Σ+ +Σ−) (z2+ iαz)/2 in equation (7) by the term

μ2(z
2+iαz)/2. This is intuitively equivalent to approximating small jumps (both up and down) by Brownian

motion with variance μ2.

In order for us to justify this approximation, we would want the term μ2(z
2 + iαz)/2 to be as close as

possible to (Σ+ +Σ−) (z2+iαz)/2. When z = 0, both terms equal zero and hence there is no approximation.

This suggests that, in order to get a handle on the truncation error, we need to compare (Σ+ +Σ−) (z2 +

iαz)/2 and μ2(z
2 + iαz)/2 when evaluated at some value of z, zlarge say, such that |z| is large. Once we
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have chosen zlarge (see Section 4), this suggest a measure of the truncation error TE:

TE ≡
1

2
|μ2(z2large + iαzlarge)−

(
Σ+ + Σ−

)
(z2large + iαzlarge)|

= |z2large + iαzlarge|

∣
∣
∣
∣
∣

∫ 1
θ+

0

μ+

(
1

t

)

t dt+

∫ 1
θ−

0

μ−

(

−
1

t

)

t dt

−
∫ 1

θ+

0

μ+

(
1

t

)

h+α,β

(
1

t
, zlarge

)
1

t2
dt −

∫ 1
θ−

0

μ−

(

−
1

t

)

h−α,β

(
1

t
, zlarge

)
1

t2
dt

∣
∣
∣
∣
∣
,

where we have performed the substitution t = 1/u, in order to help evaluate these integrals (since we will

have to compute them numerically and we want to avoid infinite limits). We will indicate how to choose

zlarge in Section 4.

3.3. Discretization error. We estimate the integrals
∫ θ+
0
μ+(u)g

+
α,β(u, z)du and

∫ θ−
0
μ−(−u)g

−
α,β(u, z) du

by a numerical method such as a Gauss-Legendre quadrature rule, using some number of points Nlarge

where Nlarge � N (or alternatively, by an adaptive Gauss-Lobatto quadrature which will compute the

integrals accurate to some very small pre-specified tolerance). We then take the difference between these

(very accurate) estimates and those obtained by a N/2-point Gauss-Legendre quadrature rule on the interval

(0, θ+) and by a N/2-point Gauss-Legendre quadrature rule on the interval (0, θ−) (see equation (7)).

We have to choose a value of z at which the integrals are computed. From the definitions of g+α,β(u, z)

and g−α,β(u, z), we know that when z = 0, g
+
α,β(u, 0) and g

−
α,β(u, 0) are both identically equal to zero for

all u. Hence, in order to get a meaningful estimate of the discretization error, we need to evaluate the

integrands at some value of z such that |z| is large. We elect to evaluate them at the same zlarge that we

use in estimating the truncation error. Hence, we get an estimate for the discretization error:

DE ≡

∣
∣
∣
∣
∣
∣

N/2∑

i=1

ω+i μ+(u
+
i )g

+
α,β(u

+
i , zlarge)−

∫ θ+

0

μ+(u)g
+
α,β(u, zlarge) du

+
N∑

i=1+N/2

ω−i μ−(−u
−
i )g

−
α,β(u

−
i , zlarge)−

∫ θ−

0

μ−(−u)g
−
α,β(u, zlarge) du

∣
∣
∣
∣
∣
∣
.(10)

3.4. Initial estimates. We have examined the forms of the discretization error and the truncation error.

Now we need a way to choose the limits θ+ and θ− of the integrals. Since, intutively speaking, the errors

act in opposite directions, a possible criterion is to find θ+ and θ− such that the discretization error DE

and the truncation error TE are equal, using, for example, a solver-type methodology. In other words, we

search for θ+ and θ− such that |TE − DE|2 is minimised and we do so in the hope that this minimum

is zero. Using a solver-type methodology does not usually guarantee that the algorithm finds the global

minimum rather than a local minimum, which would contradict the hypothesis that our model satisfies the

feature 1 (no non-linear least-squares fitting is required) in the introduction. In this generality we cannot

guarantee existence of a global minimum of |TE−DE|2 on a two-dimensional domain R2+ for a general pair

of functions μ+ and μ−. However, numerical experimentation (when the imaginary part of zlarge is less than

one in magnitude) with models of interest (see Appendix A) appears to support the claim that there exists

a unique point (θ+, θ−) ∈ R2+ at which the difference of errors equals zero.

Once we find θ+ and θ− such that the discretization and truncation errors are equal, we can get ω
+
i

and u+i , for i = 1, ..., N/2, from a N/2-point Gauss-Legendre quadrature rule on the interval (0, θ+) and

likewise we can get ω−i and u
−
i , for i = 1 + N/2, ..., N , from a N/2-point Gauss-Legendre quadrature rule

on the interval (0, θ−). We can then immediately get estimates for ai, bi, for 1 ≤ i ≤ N/2, ci, di, for

1 +N/2 ≤ i ≤ N as indicated in equation (9) and for σ2, via σ2 = μ2.
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3.5. Initial estimates via a simplified algorithm. The strategy described in the last section is certainly

feasible and it would be applicable to any Lévy process with a completely monotonic Lévy density but it

does rely on being able to solve uniquely for the limits θ+ and θ− via a solver-type methodology. It would be

preferable to simplify the algorithm in order to reduce the problem to solving for a single parameter using a

simple one-dimensional root finder method such as bisection. We will describe such a simplified algorithm

in this subsection. In order to do this, we must make a further assumption about the Lévy density.

Assumption 3.1. In this subsection only, we further assume that the Lévy density can be expressed in the

form:

L(x) exp(−r+x) =
∫∞
0
e−uxμ+(u)du for x > 0,

L(−x) exp(r−x) =
∫ 0
−∞ e

−uxμ−(u)du for x < 0,
(11)

where L : (0,∞) → R is completely monotonic, constants r+, r− ∈ R and the functions μ+ : (0,∞) → R

and μ− : (−∞, 0)→ R are the densities of the corresponding measures in expression (2).

Note that Assumption 3.1 gives a relationship between the Laplace transforms of the functions u 7→ μ+(u)

and u 7→ μ−(−u), where u ∈ (0,∞). By inverting Laplace transforms we find the following identity

μ+(u+ r+)H(u+ r+) = μ−(−(u+ r−))H(u+ r−) = μ(u) for all u > 0,(12)

whereH is the Heaviside function and μ is the Laplace inverse of L. Since μ(u) = 0 for all u < 0, equality (12)

implies μ+(u) = 0, for all u < max(r+, 0), and μ−(−u) = 0, for all u < max(r−, 0).

We now use the asymmetry created by the representation (11) of the Lévy density. If we make the change

of variables u → u − r+ in the first and third terms and u → u − r− in the second and fourth terms of

equation (6), then, using identity (12), we can express the characteristic function as:

φ(z) =

∫ θ+−r+

0

μ(u)g+α,β(u+ r+, z) du +

∫ θ−−r−

0

μ(u)g−α,β(u+ r−, z) du

− (z2 + iαz)

(∫ +∞

θ+−r+

μ(u)h+α,β(u+ r+, z) du+

∫ +∞

θ−−r−

μ(u)h−α,β(u+ r−, z) du

)

.(13)

The parameters r+ and r− provide natural scalings. Hence, we assume that the upper limits in the the first

two integrals in equation (13) are equal, i.e. θ+ − r+ = θ− − r− ≡ θ, say. With the change of variable

t = 1/u in the last two integrals of (13) the characteristic function becomes:

φ(z) =

∫ θ

0

μ(u)(g+α,β(u+ r+, z) + g
−
α,β(u+ r−, z)) du

− (z2 + iαz)

∫ 1
θ

0

μ(1/t)

t2
(h+α,β(1/t+ r+, z) + h

−
α,β(1/t+ r−, z)) dt.

As before, we approximate the first two integrals by sums. Specifically, we use weights ωi and abscissas

ui, for 1 ≤ i ≤ N/2, obtained from a N/2-point Gauss-Legendre quadrature rule on the interval (0, θ).

Furthermore, we define ωi and ui, for 1+N/2 ≤ i ≤ N , by ωi = ωi−N/2 and ui = ui−N/2. We approximate the

third and fourth terms by a Gaussian term as in Subsection 3.2. Then we can approximate the characteristic

function φ(z) in the form:

φ(z) '
N/2∑

i=1

ωiμ(ui)g
+
α,β(ui + r+, z) +

N∑

i=1+N/2

ωiμ(ui)g
−
α,β(ui + r−, z)−

1

2
σ2(z2 + iαz), where

σ2 ≡ 2

∫ 1
θ

0

μ(1/t)

t2

(
1

(1/t+ r+)3
+

1

(1/t+ r−)3

)

dt.(14)
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The discretization error DEθ is given by (10), where μ+ and μ− are substituted by μ and, as mentioned

above, θ+ = θ + r+, θ− = θ + r−. Exactly as in Subsection 3.2, the truncation error is:

TEθ = |z2large + iαzlarge||σ
2 −

∫ 1
θ

0

μ(1/t)

t2
(h+α,β(1/t+ r+, zlarge) + (h

−
α,β(1/t+ r−, zlarge))dt|.

We now determine θ by computing the root of the equation DEθ = TEθ. We no longer need to use a

solver-type methodology - a simple bisection method will suffice. We then obtain the reciprocals of the

mean jump sizes bi, for 1 ≤ i ≤ N/2, and di, for 1 +N/2 ≤ i ≤ N , and (initial estimates for) the intensities

rates ai, for 1 ≤ i ≤ N/2, and ci, for 1 +N/2 ≤ i ≤ N , of the approximating HEJD process:

bi = ui + r+, di = ui + r− and ai =
ωi

bi
μ(ui), ci =

ωi

di
μ(ui).(15)

The diffusion variance σ2 of the approximating HEJD process is given by equation (14).

Remark 3.2. 1. Notice that the reciprocals of the mean jump sizes are scaled by r+ for the up jumps, and

by r− for the down jumps, which seems a very intuitive result.

2. In the special case of an NIG process (appendix A), the form of μ(u) implies that we can actually use a

N/2-point Gauss-Legendre quadrature rule on the interval (α, θ) (rather than on the interval (0, θ)).

3. In the case that α = 0 and the imaginary part of zlarge is equal to zero, it is possible to prove that DEθ is

an increasing function of θ and TEθ is a decreasing function of θ. Hence, we can deduce that, in this case,

the equation DEθ = TEθ certainly has a unique root in (0,∞). We will use this observation to motivate our

choice of zlarge (see Section 4) (as an aside, the uniqueness of the root does, in fact, hold in greater generality).

3.6. Refining the results. Let us summarize our proposed algorithm up to this point. Under Assump-

tion 3.1, using standard results from Gauss-Legendre quadrature we have estimates for ai, bi, ci+N/2, di+N/2,

i = 1, . . . , N/2 (see (15)) and σ2 (see (14)) which are essentially analytic. It is shown in [25] that these

estimates would allow us to compute prices of vanilla options under a HEJD process which are quite close

to the prices of vanilla options under the Lévy process in equation. However, the prices are not as close as

we would like. Therefore, we now seek to refine our parameter estimates.

The key idea is to refine only the estimates for the parameters that enter linearly into the characteristic

exponent. Therefore from now on we regard the mean jump sizes 1/bi and 1/di+N/2 as fixed. For each

i = 1, . . . , N/2 we denote by a
(0)
i , c

(0)
i+N/2 the initial estimates of ai, ci+N/2 from (15) and by σ

(0)2 the initial

value σ2 obtained in Subsections 3.4 (or 3.5). We now seek to refine our initial estimates by finding the values

of ai, ci+N/2, for i = 1, . . . , N/2 , and σ
2 which most closely match (in both real and imaginary parts) the

characteristic exponent of a HEJD process (multiplied by a carefully chosen weighting function z 7→ Ω(z))

with the characteristic exponent of the Lévy process in question (multiplied by the same weighting function

z 7→ Ω(z)) at some judiciously chosen points zk, k = 1, ...,m, in C (see Subsection 4.1).

As mentioned above, an important point is that the characteristic exponent of the HEJD process is linear

in ai, ci and σ
2. Indeed, this is the very reason why we choose to fit the characteristic exponents (multiplied

by a weighting function) rather than the characteristic functions.

Essentially, we now have to solve a linear system of the form Ax = b, where A ∈ R2m×(N+1), x ∈ RN+1

and b ∈ R2m, where x = [a1 . . . aN/2 c1+N/2 . . . cN κσ2]T , and where, for 1 ≤ k ≤ m, b2k−1 and b2k are

given by the real and imaginary parts of Ω(zk)
[
φα(zk) + (κ− 1) 12σ

2(z2k + iαzk)
]
respectively, and where,
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for 1 ≤ k ≤ m, 1 ≤ j ≤ N + 1, A2k−1,j and A2k,j are respectively given by the real and imaginary parts of:





Ω(zk)

((
bj

bj − izk
− 1

)

− iαzk

(
bj

bj − 1
− 1

))

if 1 ≤ j ≤ N
2 ,

Ω(zk)

((
dj

dj + izk
− 1

)

− iαzk

(
dj

dj + 1
− 1

))

if N2 + 1 ≤ j ≤ N,

−Ω(zk)

(
z2k + iαzk
2

)

if j = N + 1,

(16)

and where φα(z) is the characteristic exponent of the Lévy process we are trying to approximate. The

parameters α and κ take values in the set {0, 1} and their roles are explained below.

If we try to solve this linear system directly, we will have two problems. Firstly, since we fit both the real

and imaginary part of the characteristic exponents, we will have an even number of equations 2m. If we

decide to fit ai, ci+N/2, i = 1, . . . , N/2, and σ
2 the number of parameters will be odd, and the linear system

will not be square. In any event, we may wish to have the flexibility to choose m such that 2m > N + 1.

Secondly, solving the linear system directly does not guarantee that ai, ci+N/2 and σ
2 are all positive.

To allow us to fit the characteristic exponents at a number of points m, possibly such that 2m > N + 1,

and to try to ensure ai, ci+N/2 and σ
2 are all positive, we will use Tikhonov regularization. Specifically,

instead of solving Ax = b, we seek x that minimizes |Ax− b|2 + ε2 |x− x0|
2
, where ε ∈ R+ and where

x0 ∈ RN+1 is the vector of our initial estimates x0 = [a
(0)
1 . . . a

(0)
N/2 c

(0)
1+N/2 . . . c

(0)
N κσ

(0)2]T . The solution

is given by:

x = x0 + (A
TA+ ε2I)−1AT (b−Ax0).(17)

We choose some ε (see Section 4) that will allow us to reach a compromise between the necessity that the

coefficients ai, ci+N/2, i = 1, . . . , N/2, and σ
2 be non-negative and the precision of our solution. We allow

two possibilities in solving the linear system given by (16) via equation (17).

• We can keep our initial estimate for σ(0)2 or refine it, by choosing κ = 0 or κ = 1 respectively.

• We can decide to fit the characteristic exponents, or the mean-corrected characteristic exponents,

by choosing α = 0 or α = 1 respectively.

In the next section, we will make explicit our choices of the points zk, k = 1, ...,m (where we fit the

characteristic exponents), of zlarge (which we use in calculating the truncation and discretization errors) and

of the weighting function Ω(z).

4. Vanilla options

In [27], the value of an option, at time t0, when the asset price is St0 , whose payoff function is min (ST ,K),

where ST is the asset price at maturity T > t0 and K is the strike, is shown to be given by

f(St0 ,K, T ) =
Ke−r(T−t0)

2π

∫ iν+∞

iν−∞
eizk
ΦT−t0(−z)
z2 − iz

dz,(18)

where r is the interest rate, q is the dividend yield, k = ln

(
K

St0

)

− (r − q)(T − t0), ΦT−t0 is the mean-

corrected characteristic function of the Lévy process, ν is the imaginary part of z and ν ∈ (0, 1). In

both [18] and [27], the integral is evaluated at ν = 1/2. This gives z = u+ i/2, where u is real, that we use

in equation (18). Hence, after some simplification,

f(St0 ,K, T ) =
1

π

√
St0Ke

−T−t02 (r+q)

∫ +∞

0

<

(

eiuk
ΦT−t0(−u− i/2)
u2 + 1/4

)

du

=
1

π

√
St0Ke

−T−t02 (r+q)

∫ π

0

<

(

ei tan(y/2)k/2ΦT−t0

(

−
1

2
tan

(
−
y

2

)
−
i

2

))

dy,(19)
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where we have made the substitution y = 2arctan(2u). Call and put vanilla option prices, at time t0, are

given by St0e
−q(T−t0) − f(St0 ,K, T ) and Ke

−r(T−t0) − f(St0 ,K, T ) respectively.

Our task now is to find an algorithm for choosing the points zk, k = 1, . . . ,m, where we fit the charac-

teristic exponent and the parameter zlarge which is used to calculate the discretization and the truncation

errors. We also need to specify the form of the weighting function Ω which appears in (16). We will use the

form of the integrals in equations (18) and (19) to motivate our choices, because matching vanilla prices in

the original Lévy process and in the (approximating) HEJD process is the same as matching the integrals

in equations (18) and (19) with the corresponding characteristic functions.

4.1. Determination of the points zk. The form of the integrals in equations (18) and (19) suggests that

the points zk, for k = 1, ...,m, where we try to match the characteristic exponents, should lie on one of the

lines ±(u + i/2), u ∈ R, in the complex plane. If we choose K to be the at-the-money strike (i.e. k = 0),

the integrand in equation (19) has the form < (ΦT−t0(− tan(−y/2)/2− i/2)) . To price the option we need

to evaluate this integral, so a natural way of choosing the points zk is to choose them so that if we were to

have chosen these points zk as abscissas in the numerical evaluation of this integral, the integral would be as

precise as possible. We can again use Gauss-Legendre quadrature, to find the abscissas at which we would

evaluate the integral. Discretizing the integral as a discrete sum, we obtain

∫ π

0

<

(

ΦT−t0

(

−
1

2
tan

(
−
y

2

)
−
i

2

))

dy ≈
m∑

k=1

ωk<

(

ΦT−t0

(

−
1

2
tan

(
−
yk

2

)
−
i

2

))

,

where the weights ωk and the abscissas yk come from a m-point Gauss-Legendre quadrature rule on the

interval (0, π). This gives us the points zk, namely zk = −1/2 tan (yk/2) − i/2, where we will choose to do

the fitting of the characteristic exponents described in Section 3.6. We still have to determine the number

of points m we will use. We would like m to be greater than N/2 but, at the same time, we would like m

not to be too large. We found m ≈ 3N/4 gives very good results, in practice.

4.1.1. Determination of zlarge. In Subsection 3.5, we evaluated the discretization error DEθ and the trun-

cation error TEθ at some point zlarge such that |zlarge| is large. To choose the precise value of zlarge, we can

once again draw intuition from the form of the integrals in equations (18) and (19). A possible choice would

be to choose zlarge of the form zlarge = ularge + i/2, where ularge is real. The disadvantage of this choice is

that we cannot prove that the equation DEθ = TEθ has a unique root. Hence, in view of the remark at

the end of Section 3.4, we actually choose zlarge of the form zlarge = ularge, where ularge is positive. We now

have to find ularge. Since the integrand <(ΦT−t0(−u − i/2)/(u
2 + 1/4)) in equation (19) converges to 0 as

u → ∞, we choose ularge such that the integrand is smaller than some specified threshold. Typical values

of this threshold are between 10−4 and 10−10, depending on how fast the integrand converges to 0. Note

that, as an aside, since we expect that ularge � 1/2, we expect little difference between the two possible

choices.

4.1.2. Determination of the weighting function z 7→ Ω(z). We now have to choose a form for the weighting

function Ω that we used in Subsection 3.6. Noting that we made the choice z = u + i/2, where u is real,

in going from equation (18) to (19), we choose Ω(z) in the form Ω(u + i/2). If we observe the form of the

integral in equation (19), we see that <
(
ΦT−t0(−u− i/2)/(u

2 + 1/4)
)
tends to zero very rapidly as u tends

to infinity and it does so because both < (ΦT−t0(−u− i/2)) → 0 and 1/(u2 + 1/4) → 0 as u → ∞. This

means that the contribution to the integral when evaluating the integrand at large u is negligible compared

to the contribution to the integral when evaluating the integrand when u is close to zero. This suggests the

use of a weighting function Ω(z) ≡ Ω(u + i/2) that also tends to zero as u → ∞. If we do not do this (for

example, if we were to choose Ω(z) = 1, and noting that the characteristic exponent of the HEJD process
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contains a term proportional to z2), then when trying to match the characteristic exponents in equation

(16) of Subsection 3.6 we, intuitively speaking, give too much weight to values of the characteristic exponent

when z is large in modulus. The observation that the characteristic exponent of the HEJD process contains

a term proportional to z2 leads us to propose a weighting function Ω(z) ≡ 1
z2−iz , which is equivalent to

Ω(u+ i/2) = 1
u2+1/4 .

4.2. Vanilla option prices. In this section we will present our results for vanilla option prices obtained

from the approximating HEJD process and compare them to those obtained from the Lévy process we want

to approximate. In this paper, we will only consider vanilla option prices for the case where the Lévy process

is a NIG process, whose parameters we take as given (for examples of VG and CGMY processes, we refer

the reader to Le Saux (2008)). Using the algorithm described in Section 3 and choosing zlarge, Ω(z) and

zk, k = 1, ...,m as explained above, we obtain the parameters ai, bi, ci+N/2, di+N/2, i = 1, . . . , N/2, and σ

of the approximating HEJD process. When solving the linear system in equation (16) via equation (17), we

found by numerical experimentation that we obtained the best results when we kept our initial estimate for

σ(0)2 (i.e. κ = 0) and when we fitted the mean-corrected characteristic exponents (i.e. α = 1). Therefore,

all the results we report in Sections 4 and 5 will use these choices. We used ε = 10−5 in equation (17). For

the results presented in this section, we set the number of points zk, m, equal to 10.

The NIG parameters were those obtained by a calibration to the market prices of vanilla options on the

Eurostoxx 50 equity index in [14]: α = 8.858, β = −5.808 and δ = 0.174 (see Appendix A.1 for the definition

of the model). We analyse vanilla option prices obtained through equation (19) under the NIG process using

five different approaches:

(a) Using equation (19) with the characteristic function for the NIG process. Clearly this approach will

give us the “true” values against which we can benchmark the accuracy of approaches (b), (c), (d) and (e).

For the remaining four approaches, we used equation (19) with the characteristic function for the HEJD

process where we have fitted N = 14 Poisson processes (seven up and seven down).

(b) We used a solver-type methodology to find the roots θ+ and θ− of the equation TE = DE as in

Section 3.4. Numerical experimentation appeared to confirm that we had found unique roots. We then used

equation (17). We used a precision of 10−5 for the threshold that determines zlarge.

(c) We proceeded as in approach (b). We then further revised our estimate for σ2 by exactly matching

the variance of the NIG process and of the HEJD process. The revised estimate was positive. The estimates

for ai, bi, ci+N/2, di+N/2, i = 1, . . . , N/2, are exactly as in approach (b).

(d) We used the intensity rates, mean jump sizes and diffusion volatility from [14]. This data was supplied

by Marc Jeannin and Martijn Pistorius to whom we again express our thanks.

(e) We used the simplified algorithm of Subsection 3.5 where we only do a one-dimensional search for θ

by computing the root of the equation DEθ = TEθ. We then used equation (17). We used a precision of

10−8 for the threshold that determines zlarge.

We valued vanilla options with an initial asset price St0 = 100, risk-free rate r = 0, dividend yield q = 0

and time to maturity equal to one year. We priced options with 41 different strikes where the strikes were

of the form 100 exp(y) where the value of y ranged from −0.8 to 0.8 in intervals of 0.04. Hence, the strikes

varied from approximately 44.93 to approximately 222.55. For the options with strikes greater than or

equal to 100, we valued call options, else we valued put options. We then converted these prices to implied

volatilities (expressed as percentages). We verified (by increasing the number of points used in the numerical

integration) that all the implied volatilities reported were accurate to at least five decimal places. The results

are in Figure 1 (and in tabular format in a spreadsheet available online [12]).
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We can take approach (a) as giving the “true” values, then we can take the differences in implied volatilities

between approach (a) and the other four approaches as being a measure of the error of the methodology for

approximating a NIG process by a HEJD process consisting of fourteen Poisson processes. For approaches

(b), (c), (d) and (e), the root-mean-square errors were 0.2044, 0.1989, 4.2558 and 0.1595 (expressed as

implied volatility percentage points) respectively and the maximum absolute errors across all 41 strikes were

0.6537, 0.6385, 10.3291 and 0.5329 for approaches (b), (c), (d) and (e) respectively.

We can see that approaches (b), (c), (d) and (e) all fit quite well for low strikes but the fit is visibly less

good for high strikes. This is particularly the case for approach (d) where the quality of the fit is much

worse than for approaches (b), (c) and (e). Because the errors are much larger for approach (d), we have

not included approach (d) in the graph of the errors in Figure 1. Based on the root-mean-square errors and

maximum absolute errors across all 41 strikes, approach (c) works a little better than approach (b). However,

inspection of Figure 1 shows that, in fact, the slightly better performance of approach (c) is explained by

the fact that it performs better at very high strikes. Across the range of strikes from, say, 65.0 to, say, 155.0

(which might be more relevant in practice), approach (b) works better than approach (c). We see that while

exactly matching the variance seems appealing, it is not, in fact, particularly successful. [25] shows that

moment matching (she also considers matching the third moment i.e. the skew) does not perform well for

the case of the VG process either. The fact that moment matching does not perform well can be explained

by the fact that moment matching is essentially equivalent to matching the characteristic function near the

origin. However, moment matching may actually make worse the fit between the characteristic functions of

the Lévy process and the approximating HEJD process away from the origin and hence produce less accurate

vanilla option prices. Approach (e) clearly works the best. It has the smallest root-mean-square error and

the smallest maximum absolute error.

5. Barrier option price comparisons

We will now proceed to examine and compare barrier option prices obtained from the approximation of

the Lévy process by a HEJD process which we described in Section 3.

Our approach is as follows. We take as given the parameters of the Lévy process in question. Using the

results of Section 3, we approximate the Lévy process by a HEJD process. We then price barrier options

using the methodology of [9] which relies on the fact that the Laplace Transform of the barrier option price

can be computed essentially in closed form. The Gaver-Stehfest algorithm is then used to invert the Laplace

Transform and obtain the barrier option price. We will use the terminology nTerms to denote the number of

terms used in the Gaver-Stehfest algorithm. We will refer to this methodology as the HEJDCC methodology.

In order to give us a benchmark against which to compare our results, we will also utilise another approach.

[5], [6] describe (henceforth the BoyarLeven methodology) FFT-based algorithms for pricing barrier options

under General Classes of Lévy processes which are not based on approximating the Lévy process by a HEJD

process. It should be said that the BoyarLeven methodology uses numerical methods and hence can’t be and

won’t be literally exact. However, it does not approximate the Lévy process in question by a HEJD process

at the outset as our approach does and it does appear to give accurate barrier option prices. Hence, we take

as a working hypothesis that the option prices obtained from the BoyarLeven methodology are the most

accurate and, therefore, we can and will use prices obtained from the BoyarLeven methodology to benchmark

the accuracy of our HEJDCC methodology. These prices were provided to us by Mitya Boyarchenko. We

again express our thanks to him and to Sergei Levendorskii.

In Subsection 5.1, we will also compare the prices from the HEJDCC methodology against prices reported

in [14]. They also price barrier options by approximating the Lévy process in question by a HEJD process
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but their methodology to do this approximation is very different. We will refer to their methodology as the

JPHEJD methodology.

The rest of this section is structured as follows: In Subsection 5.1, we compare single barrier option prices

under the NIG process using the HEJDCC, BoyarLeven and JPHEJD methodologies. In Subsection 5.2, we

compare double barrier option prices under the CGMY process for different values of the Y parameter using

the HEJDCC and BoyarLeven methodologies. The above comparisons all use fourteen Poisson processes for

the HEJD process.

5.1. Single barrier option price comparisons under NIG. In this section, we will price single barrier

options under the NIG process using the HEJDCC, JPHEJD and BoyarLeven methodologies. The data we

will use is the same as in Table 1 of [5] and in Table 2 of [14].

We price down-and-out put barrier options with the barrier set at 2100. The options have a strike of

3500, a maturity of one year, the risk-free rate r = 0.03 and the dividend yield q = 0. We price the options

with 32 different initial asset prices which are expressed as a percentage of 3500. The percentages are: 64.0,

66.0,...,126.0. Hence, the initial asset prices varied from 2240 to 4410.

The NIG parameters are the same as we used in Section 4: α = 8.858, β = −5.808 and δ = 0.174. We

used approaches (b) and (e) of Section 4 and fitted a HEJD process with fourteen Poisson processes (seven

up and seven down - this is the same number as [14] used) using the results of Section 3. The values of

the parameters ai, bi, ci+N/2, di+N/2, i = 1, . . . , N/2 and σ that we obtained are in a spreadsheet available

online [12].

We then priced the barrier options using the methodology of [9]. Since [9] always works with double

barrier options, we priced the options as if they were double barrier knockout put options and set the upper

barrier level to 21000 which makes the corresponding knockout probability negligible. We used two different

values of nTerms, namely 12 and 14 for approach (b) (labelled HEJDCC (Approach (b)), nTerms = 12 and

HEJDCC (Approach (b)), nTerms = 14 respectively) but for approach (e) we only used a value of nTerms

of 12 (labelled HEJDCC (Approach (e)) (simplified algorithm)). As a comparison, we also display the prices

of the barrier options using the BoyarLeven methodology and those from [14]. The results are displayed in

graphical form in Figure 2 (and in tabular format in a spreadsheet available online [12]).

Overall, the agreement between the prices using the different methodologies and approaches is good.

However, it is clear that the prices obtained from the HEJDCC methodology are much closer than those of

the JPHEJD methodology to the prices obtained from the BoyarLeven methodology. In fact, over the whole

range of initial asset prices, the lines in Figure 2 depicting the prices using the BoyarLeven methodology

and those using the HEJDCC methodology (for both approaches / values of nTerms) essentially lie on top

of each other.

We take as our working hypothesis that the BoyarLeven methodology is the most accurate and we compute

the root-mean-square proportional error (i.e. the errors relative to the BoyarLeven prices) for the HEJDCC

methodology (we use approach (b) with nTerms set to 12 for this comparison but the other cases give

qualitatively the same results) and for the JPHEJD methodology. The root mean-square errors were (for

the HEJDCC methodology) 0.00312 and (for the JPHEJD methodology) 0.04401. Hence, the root-mean-

square errors in the HEJDCC methodology are about one-fourteenth the root-mean-square errors in the

JPHEJD methodology.

We believe that the reason for the better performance of the HEJDCC methodology is that the procedure

for fitting a HEJD process to the NIG process is much better.
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5.2. Double barrier option price comparisons under CGMY. In this section, we will price double

barrier options under the CGMY process for different values of the Y parameter using the HEJDCC and

BoyarLeven methodologies. The data we will use is closely based on that in Table 1 of [6].

We price two types of double barrier options, namely double barrier knockout put (henceforth DBKP)

options and double-no-touch (henceforth DNT) options. For both types, the lower barrier is 2800 and the

upper barrier is 4200. If the asset price trades at a level equal to or outside the barriers at any time up to

and including maturity, the options are knocked out and expire worthless. If the options are not knocked

out, then the DBKP options have the same payoff at maturity as vanilla put options with strike 3500 and

the DNT options pay one unit of account at maturity. The risk-free rate r = 0.03, the dividend yield q = 0

and all options have a maturity of 0.1 years. We price both types of options with 75 different initial asset

prices which are expressed as a percentage of 3500. The percentages are: 80.1, 80.2,(i.e. in intervals of

0.1),...,82.0, then 83.0, 84.0, (i.e. in intervals of 1.0),...,118.0, then 118.1, 118.2, (i.e. in intervals of 0.1

again),..., 119.9. We have smaller intervals when the initial asset price is close to the barriers in order to

more closely examine the behaviour of the option prices in these regions. The change in intervals at 82.0

and 118.0 is the reason why the graphs (see Figures 3, 4 and 5) appear to exhibit slight kinks at 82.0 and

118.0 - had we used constant intervals throughout the range 80.1 to 119.9, these kinks would not be present.

We priced both types of barrier option for all the different initial asset prices for three different combi-

nations of CGMY parameters. In all three cases, we used C = 1, G = 9, M = 8. We varied Y . The three

different values of Y were: (1) Y = 0.25, (2) Y = 0.5 and (3) Y = 1.25.

For each combination of CGMY parameters, we fitted a HEJD process with fourteen Poisson processes

(seven up and seven down) using the results of Section 3. In all cases, we used the simplified algorithm

where we only do a one-dimensional search for θ by computing the root of the equation DEθ = TEθ. The

values of the parameters ai, bi, ci+N/2, di+N/2, i = 1, . . . , N/2 and σ are available in [25].

We then priced the barrier options using the methodology of [9]. We priced these options with two

different values of nTerms (the number of terms used in the Laplace inversion), namely 12 and 14. As a

comparison, we also display the prices of the barrier options using the BoyarLeven methodology. The results

are displayed in graphical form in Figures 3, 4 and 5 (and in tabular format in [25]).

Overall, the agreement between the prices using the HEJDCC methodology and the BoyarLeven method-

ology is very good - especially when the initial asset price is not too close to either barrier. However, the

agreement does deteriorate a little when the initial asset price is very close to either barrier.

We compute the root-mean-square proportional differences (by which we mean proportional differences

to the [6] prices) (for nTerms set equal to 14), over all 75 different initial asset prices. The values obtained

were:

(1) Y = 0.25, for DBKP options 0.0836, for DNT options 0.1130.

(2) Y = 0.5, for DBKP options 0.1090, for DNT options 0.1158.

(3) Y = 1.25, for DBKP options 0.0605, for DNT options 0.0561.

We see that the infinite variation case (Y = 1.25) performs very well.

5.3. Summary of barrier option price comparisons. We have shown that, by approximating the Lévy

process in question by a HEJD process, we can very accurately price barrier options as long as the initial

asset price is not too close to the barrier (or barriers). We have shown that this is true whether the Lévy

process has finite or infinite variation. We have illustrated that our methodology for approximating the

Lévy process by a HEJD process yields more accurate barrier option prices than the methodology of [14].

However, pricing barrier options by approximating the Lévy process by a HEJD process works somewhat

less well when the initial asset price is very close to the barrier (or barriers).
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6. Conclusions

General Classes of Lévy processes provide a model that can capture the effect of smiles and skews in

implied volatilities, which the standard model of [4] and [22] cannot. Whilst pricing vanilla options remains

straightforward, it is much more difficult to price exotic options, since few, if any, analytical results ex-

ist. Hyperexponential jump-diffusion (HEJD) processes are attractive because they are considerably more

tractable than General Classes of Lévy processes and this facilitates the pricing of exotic options.

In this paper, our aim was to focus on the methodology of approximating Lévy processes by HEJD

processes. We thus developed an algorithm that determines the parameters of the approximating process

in a more systematic way than the procedures in the extant literature and that satisfies the six desirable

features presented in the introduction. Indeed, our methodology is intuitive and easy to implement and does

not require non-linear least-squares fitting in the determination of the parameters of the HEJD process. Our

methodology calculates intensity rates and the mean jump sizes of the HEJD process, thus there is no need

to guess the mean jump sizes. It also computes the magnitude of the very small jumps of the Lévy process

in question, below which the very small jumps are approximated by Brownian motion.

Moreover, comparing our results to those obtained from existing procedures for approximating Lévy

processes by a HEJD process, we demonstrate that our methodology computes more accurate option prices,

both for vanilla and barrier options.

Appendix A. The NIG and CGMY processes

A.1. The Normal Inverse Gaussian Process. The Normal Inverse Gaussian (NIG) process was intro-

duced by [3]. It has parameters α > 0,−α < β < α and δ > 0. Its unit time characteristic function is given

by

ΦNIG(u;α, β, δ) = exp(−δ(
√
α2 − (β + iu)2 −

√
α2 − β2)).

From the form of the Lévy density ([14]), one can show that, in terms of equation (2), the functions μ+(u)

and μ−(u) can be written in the form:

μ+(u) =
δα

π

√(
u+ β

α

)2
− 1 1(α−β,∞)(u), μ−(u) =

δα

π

√(
u+ β

α

)2
− 1 1(α+β,∞)(−u).

In terms of Section 3.5 and equation (11),

μ(u) =
δα

π

√(u
α

)2
− 1 1(α,∞)(u), and r+ = −β, r− = β.

A.2. The CGMY Process. The CGMY process was introduced by [10], and is also called the KoBoL

process. For Y 6= 0, 1, its unit time characteristic function is given by

ΦCGMY (u;C,G,M, Y ) = exp(CΓ(−Y )
[
(M − iu)Y + (G+ iu)Y −MY −GY

]
),

where C,G,M > 0 and Y < 2.

The Lévy density is only completely monotonic if Y ≥ −1, in which case [14] show that, in terms of

equation (2), the functions μ+(u) and μ−(u) are:

μ+(u) = C
(u−M)Y

Γ(1 + Y )
1(M,∞)(u), μ−(u) = C

(−u−G)Y

Γ(1 + Y )
1(G,∞)(−u).

In terms of Section 3.5 and equation (11),

μ(u) = C
uY

Γ(1 + Y )
1(0,∞)(u), and r+ =M, r− = G.



Appendix B. Vanilla option price results

• Results for St0 = 100, r = 0, q = 0 and T = 1.

(a) Implied volatilities (expressed as a percentage)

(b) Errors in implied volatilities (expressed as percentage points) compared to the original NIG process

Figure 1. NIG results with α = 8.858, β = −5.808, δ = 0.174 and N = 14.
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Appendix C. Barrier option price results

• Single barrier option price comparisons under NIG

(a) Graph of option price against spot, where the spot is expressed as a percentage of 3500, for percentages from 64 to

126.

(b) Graph of proportional errors against spot, where the spot is expressed as a percentage of 3500, for percentages from

64 to 126.

Figure 2. NIG results with α = 8.858, β = −5.808, δ = 0.174 and N = 14.
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• Double barrier option price comparisons under CGMY

(a) Double barrier knockout put option prices

(b) DNT option prices

(c) Proportional errors for both double barrier knockout put (DBKP) option prices and double-no-touch (DNT)

option prices

Figure 3. CGMY results with C = 1, G = 9, M = 8, Y = 0.25 and N = 14.
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(a) Double barrier knockout put option prices

(b) DNT option prices

(c) Proportional errors for both double barrier knockout put (DBKP) option prices and double-no-touch (DNT) option

prices

Figure 4. CGMY results with C = 1, G = 9, M = 8, Y = 0.5 and N = 14.
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(a) Double barrier knockout put option prices

(b) DNT option prices

(c) Proportional errors for both double barrier knockout put (DBKP) option prices and double-no-touch (DNT) option

prices

Figure 5. CGMY results with C = 1, G = 9, M = 8, Y = 1.25 and N = 14.
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